An experimental technique for efficiently exploring neural architectures.

Related tags

Deep LearningSMASH
Overview

SMASH: One-Shot Model Architecture Search through HyperNetworks

An experimental technique for efficiently exploring neural architectures.

SMASHGIF

This repository contains code for the SMASH paper and video.

SMASH bypasses the need for fully training candidate models by learning an auxiliary HyperNet to approximate model weights, allowing for rapid comparison of a wide range of network architectures at the cost of a single training run.

Installation

To run this script, you will need PyTorch and a CUDA-capable GPU. If you wish to run it on CPU, just remove all the .cuda() calls.

Note that this code was written in PyTorch 0.12, and is not guaranteed to work on 0.2 until next week when I get a chance to update my own version. Please also be aware that, while thoroughly commented, this is research code for a heckishly complex project. I'll be doing more cleanup work to improve legibility soon.

Running

To run with default parameters, simply call

python train.py

This will by default train a SMASH net with nominally the same parametric budget as a WRN-40-4. Note that validation scores during training are calculated using a random architecture for each batch, and are therefore sort of an "average" measure.

After training, to sample and evaluate SMASH scores, call

python eval.py --SMASH=YOUR_MODEL_NAME_HERE_.pth

This will by default sample 500 random architectures, then perturb the best-found architecture 100 times, then employ a sort of Markov Chain to further perturb the best found architecture.

To select the best architecture and train a resulting net, then call

python train.py --SMASH=YOUR_MODEL_NAME_HERE_archs.npz

This will by default take the best architectuure There are lots of different options, including a number of experimental settings such as architectural gradient descent by proxy, in-op multiplicative gating, variable nonlinearities, setting specific op configuration types. Take a look at the train_parser in utils.py for details, though note that some of these weirder ones may be deprecated.

This code has boilerplate for loading Imagenet32x32 and ModelNet, but doesn't download or preprocess them on its own. It supports model parallelism on a single node, and half-precision training, though simple weightnorm is unstable in FP16 so you probably can't train a SMASH network with it.

Notes

This README doc is in very early stages, and will be updated soon.

Acknowledgments

Owner
Andy Brock
Dimensionality Diabolist
Andy Brock
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022