Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Related tags

Deep Learningsemco
Overview

SemCo

The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training (appearing in CVPR2021)

SemCo Conceptual Diagram

Install Dependencies

  • Create a new environment and install dependencies using pip install -r requirements.txt
  • Install apex to enable automatic mixed precision training (AMP).
git clone https://github.com/NVIDIA/apex
cd apex
python setup.py install --cpp_ext --cuda_ext

Note: Installing apex is optional, if you don't want to implement amp, you can simply pass --no_amp command line argument to the launcher.

Dataset

We use a standard directory structure for all our datasets to enable running the code on any dataset of choice without the need to edit the dataloaders. The datasets directory follow the below structure (only shown for cifar100 but is the same for all other datasets):

datasets
└───cifar100
   └───train
       │   <image1>
       │   <image2>
       │   ...
   └───test
       │   <image1-test>
       │   <image2-test>
       │   ...
   └───labels
       │   labels_train.feather
       │   labels_test.feather

An example of the above directory structure for cifar100 can be found here.

To preprocess a generic dataset into the above format, you can refer to utils/utils.py for several examples.

To configure the datasets directory path, you can either set the environment variable SEMCO_DATA_PATH or pass a command line argument --dataset-path to the launcher. (e.g. export SEMCO_DATA_PATH=/home/data). Note that this path references the parent datasets directory which contains the different sub directories for the individual datasets (e.g. cifar100, mini-imagenet, etc.)

Label Semantics Embeddings

SemCo expects a prior representation of all class labels via a semantic embedding for each class name. In our experiments, we use embeddings obtained from ConceptNet knowledge graph which contains a total of ~550K term embeddings. SemCo uses a matching criteria to find the best embedding for each of the class labels. Alternatively, you can use class attributes as the prior (like we did for CUB200 dataset), so you can build your own semantic dictionary.

To run experiments, please download the semantic embedding file here and set the path to the downloaded file either via SEMCO_WV_PATH environment variable or --word-vec-path command line argument. (e.g. export SEMCO_WV_PATH=/home/inas0003/data/numberbatch-en-19.08_128D.dict.pkl

Defining the Splits

For each of the experiments, you will need to specify to the launcher 4 command line arguments:

  • --dataset-name: denoting the dataset directory name (e.g. cifar100)
  • --train-split-pickle: path to pickle file with training split
  • --valid-split-pickle: (optional) path to pickle file with validation/test split (by default contains all the files in the test folder)
  • --classes-pickle: (optional) path to pickle file with list of class names

To obtain the three pickle files for any dataset, you can use generate_tst_pkls.py script specifying the dataset name and the number of instances per label and optionally a random seed. Example as follows:

python generate_tst_pkls.py --dataset-name cifar100 --instances-per-label 10 --random-seed 000 --output-path splits

The above will generate a train split with 10 images per class using a random seed of 000 together with the class names and the validation split containing all the files placed in the test folder. This can be tweaked by editing the python script.

Training the model

To train the model on cifar100 with 40 labeled samples, you can run the script:

    $ python launch_semco.py --dataset-name cifar100 --train-split-pickle splits/cifar100_labelled_data_40_seed123.pkl --model_backbone=wres --wres-k=2

or without amp

    $ python launch_semco.py --dataset-name cifar100 --train-split-pickle splits/cifar100_labelled_data_40_seed123.pkl --model_backbone=wres --wres-k=2 --no_amp

Similary to train the model on mini_imagenet with 400 labeled samples, you can run the script:

    $  python launch_semco.py --dataset-name mini_imagenet --train-split-pickle testing/mini_imagenet_labelled_data_40_seed456.pkl --model_backbone=resnet18 --im-size=84 --cropsize=84 
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022