PyQt6 configuration in yaml format providing the most simple script.

Overview

PyamlQt(ぴゃむるきゅーと)

PyPI version

PyQt6 configuration in yaml format providing the most simple script.

Requirements

  • yaml
  • PyQt6, ( PyQt5 )

Installation

pip install PyamlQt

Demo

python3 examples/chaos.py

Template

See examples/simple_gui.py.

import sys
import os

from pyamlqt.create_widgets import create_widgets
import pyamlqt.qt6_switch as qt6_switch

qt6_mode = qt6_switch.qt6

if qt6_mode:
    from PyQt6.QtWidgets import QApplication, QMainWindow
else:
    from PyQt5.QtWidgets import QApplication, QMainWindow

YAML = os.path.join(os.path.dirname(__file__), "../yaml/chaos.yaml")

class MainWindow(QMainWindow):
    def __init__(self):
        self.number = 0
        super().__init__()

        # geometry setting ---
        self.setWindowTitle("Simple GUI")
        self.setGeometry(0, 0, 800, 720)
        
        # Template ==========================================
        self.widgets, self.stylesheet = self.create_all_widgets(YAML)
        for key in self.widgets.keys():
            self.widgets[key].setStyleSheet(self.stylesheet[key])
        # ==============================================

        # --- Your code ----
        # -*-*-*-*-*-*-*-*-*
        # -----------------
        
        self.show()

    # Template ==========================================
    def create_all_widgets(self, yaml_path: str) -> dict:
        import yaml
        widgets, stylesheet_str = dict(), dict()
        with open(yaml_path, 'r') as f:
            self.yaml_data = yaml.load(f, Loader=yaml.FullLoader)
        
            for key in self.yaml_data:
                data = create_widgets.create(self, yaml_path, key, os.path.abspath(os.path.dirname(__file__)) + "/../")
                widgets[key], stylesheet_str[key] = data[0], data[1]

        return widgets, stylesheet_str
    # ==============================================

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = MainWindow()
    # sys.exit(app.exec_())
    sys.exit(app.exec())

Elements (dev)

In yaml, you can add the following elements defined in PyQt.Widgets This may be added in the future.

  • pushbutton : definition of QPushButton
  • qlabel : definition of QLabel
  • qlcdnumber : definition of QLCDNumber
  • qprogressbar : definition of QProgressBar
  • qlineedit : definition of QLineEdit
  • qcheckbox : definition of QCheckbox
  • qslider : definition of QSlider
  • qspinbox : definition of QSpinBox
  • qcombobox : definition of QCombobox
  • image : definition of QLabel (using image path)
  • stylesheet : definition of Stylesheet (define as QLabel and setHidden=True)

YAML format

PyamlQt defines common elements for simplicity. Not all values need to be defined, but if not set, default values will be applied

key: # key name (Required for your scripts)
  type: slider # QWidgets
  x_center: 500 # x center point
  y_center: 550 # y center point
  width: 200 # QWidgets width
  height: 50 # QWidgets height
  max: 100 # QObject max value
  min: 0 # QObject min value
  default: 70 # QObject set default value
  text: "Slider" # Text
  font_size: 30 # Text size [px]
  font_color: "#ff0000" # Text color
  font: "Ubuntu" # Text font
  font_bold: false # bold-text option
  items: # Selectable items( Combobox's option )
    - a
    - b
    - c

PyQt5 Mode

If you want to use PyQt5, you have to change the qt6_switch.py file.

  • Open the file and change the qt6_mode variable to False.
  • pip3 install PyQt5
  • pip3 install -v -e .
You might also like...
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Interactive Terraform visualization. State and configuration explorer.
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Releases(v0.3.0)
  • v0.3.0(Apr 28, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • 新しいモジュールPyamlQtWindow
      • 初期化には引数が必要です。(README.mdを読んでください)
      • デモプログラムがとてもシンプルになりました。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    There is a possibility of destructive changes to the API for the time being.

    Changes

    • New module PyamlQtWindow.
      • Arguments are required for initialization. (Please read README.md)
      • The demo program is now very simple.

    import sys
    import os
    
    from pyamlqt.mainwindow import PyamlQtWindow
    from PyQt6.QtWidgets import QApplication
    
    YAML = os.path.join(os.path.dirname(__file__), ". /yaml/chaos.yaml")
    
    class MainWindow(PyamlQtWindow):
        def __init__(self):
            self.number = 0
            super(). __init__("title", 0, 0, 800, 720, YAML)
            self.show()
    
    if __name__ == '__main__':
        app = QApplication(sys.argv)
        window = MainWindow()
        sys.exit(app.exec())
    
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Apr 13, 2022)

    Japanese

    PyamlQtはGUIデザイン初心者のためのGUI定義フォーマットです。コントリビューション大歓迎です!

    しばらくはAPIの破壊的変更が行われる可能性があります。

    変更点

    • rect要素とstyle要素を追加し、stylesheetの仕様が大きく変更されました。
    • 複数のyamlからのロードをサポートします。パスは絶対パスを指定するか、GitHubなどのソースコードへのURL(raw.githubusercontent.com に続くURL)を指定してください。
      • URL指定する場合は~/.cache/pyamlqt/yaml以下にyamlがダウンロードされます。
      • ロード先のyamlファイルで同じファイル名・同じキー名を指定しないでください。再帰的にロードされてメモリを消費し続けます。

    English

    PyamlQt is a GUI definition format for GUI design beginners. Contributions are welcome!

    The API may undergo destructive changes for a while.

    Changes

    • The specification of stylesheet has been significantly changed with the addition of the rect and style elements.
    • Support for loading from multiple yaml files. Paths should be absolute paths or URLs to source code such as GitHub (URLs following raw.githubusercontent.com).
      • If you specify a URL, the yaml will be downloaded under ~/.cache/pyamlqt/yaml.
      • Do not specify the same file name and the same key name in the yaml file to be loaded. They will be loaded recursively and continue to consume memory.
    Source code(tar.gz)
    Source code(zip)
Owner
Ar-Ray
1st grade of National Institute of Technology(=Kosen) student. Associate degree, Hatena Blogger
Ar-Ray
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022