RL agent to play μRTS with Stable-Baselines3

Overview

Gym-μRTS with Stable-Baselines3/PyTorch

This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS using Stable-Baselines3 library. Apart from reproducibility, this might open access to a diverse set of well tested algorithms, and toolings for training, evaluations, and more.

Original paper: Gym-μRTS: Toward Affordable Deep Reinforcement Learning Research in Real-time Strategy Games.

Original code: gym-microrts-paper.

demo.gif

Install

Prerequisites:

  • Python 3.7+
  • Java 8.0+
  • FFmpeg (for video capturing)
git clone https://github.com/kachayev/gym-microrts-paper-sb3
cd gym-microrts-paper-sb3
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Note that I use newer version of gym-microrts compared to the one that was originally used for the paper.

Training

To traing an agent:

$ python ppo_gridnet_diverse_encode_decode_sb3.py

If everything is setup correctly, you'll see typicall SB3 verbose logging:

Using cpu device
---------------------------------
| rollout/           |          |
|    ep_len_mean     | 2e+03    |
|    ep_rew_mean     | 0.0      |
| time/              |          |
|    fps             | 179      |
|    iterations      | 1        |
|    time_elapsed    | 11       |
|    total_timesteps | 2048     |
---------------------------------
------------------------------------------
| rollout/                |              |
|    ep_len_mean          | 1.72e+03     |
|    ep_rew_mean          | -5.0         |
| time/                   |              |
|    fps                  | 55           |
|    iterations           | 2            |
|    time_elapsed         | 74           |
|    total_timesteps      | 4096         |
| train/                  |              |
|    approx_kl            | 0.0056759235 |
|    clip_fraction        | 0.0861       |
|    clip_range           | 0.2          |
|    entropy_loss         | -5.65        |
|    explained_variance   | 0.412        |
|    learning_rate        | 0.0003       |
|    loss                 | -0.024       |
|    n_updates            | 10           |
|    policy_gradient_loss | -0.00451     |
|    value_loss           | 0.00413      |
------------------------------------------

As soon as correctness of the implementation is verified, I will provide details on how to use RL Baselines3 Zoo for training and evaluations.

Implementational Caveats

A few notes / pain points regarding the implementation of the alrogithms, and the process of integrating it with stable-baselines3:

  • Gym does not ship a space for "array of multidiscrete" use case (let's be honest, it's not very common). But it gives an option for defining your space when necessary. A new space, when defined, is not easy to integrate into SB3. In a few different places SB3 raises NotImplementedError facing unknown space (example 1, example 2).
  • Seems like switching to fully rolled out MutliDiscrete space definition has a significant performance penalty. Still investigating if this can be improved.
  • Invalid masking is implemented by passing masks into observations from the wrapper (the observation space is replaced with gym.spaces.Dict to hold both observations and masks). By doing it this way, masks are now available for policy, and fit rollout buffer layout. Masking is implemented by setting logits into -inf (or to a rather small number).

Look for xxx(hack) comments in the code for more details.

Owner
Oleksii Kachaiev
Principal Software Engineer @ Riot, League of Legends Data/ML/AI. Research interests: human-level intelligence for RTS games and complex open world simulations.
Oleksii Kachaiev
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022