Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

Related tags

Deep LearningDDAMS
Overview

DDAMS

This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Preprint].

Requirements

  • We use Conda python 3.7 and strongly recommend that you create a new environment: conda create -n ddams python=3.7.
  • Run the following command: pip install -r requirements.txt.

Data

You can download data here, put the data under the project dir DDAMS/data/xxx.

  • data/ami
    • data/ami/ami: preprocessed meeting data
    • data/ami/ami_qg: pseudo summarization data.
    • data/ami/ami_reference: golden reference for test file.
  • data/icsi
    • data/icsi/icsi: preprocessed meeting data
    • data/icsi/icsi_qg: pseudo summarization data.
    • data/icsi/icsi_reference: golden reference for test file.
  • data/glove: pre-trained word embedding glove.6B.300d.txt.

Reproduce Results

You can follow the following steps to reproduce the best results in our paper.

download checkpoints

Download checkpoints here. Put the checkpoints, including AMI.pt and ICSI.pt, under the project dir DDAMS/models/xx.pt.

translate

Produce final summaries.

For AMI, we can get summaries/ami_summary.txt.

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/AMI.pt \
               -output summaries/ami_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI, we can get summaries/icsi_summary.txt.

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/ICSI.pt \
               -output summaries/icsi_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

remove tags

<t> and </t> will raise errors for ROUGE test. So we should first remove them. (following OpenNMT)

sed -i 's/ <\/t>//g' summaries/ami_summary.txt
sed -i 's/<t> //g' summaries/ami_summary.txt
sed -i 's/ <\/t>//g' summaries/icsi_summary.txt
sed -i 's/<t> //g' summaries/icsi_summary.txt

test rouge score

  • Change pyrouge.Rouge155() to your local path.

Output format >> ROUGE(1/2/L): xx.xx-xx.xx-xx.xx

python test_rouge.py -c summaries/ami_summary.txt
python test_rouge_icsi.py -c summaries/icsi_summary.txt

ROUGE score

You will get following ROUGE scores.

ROUGE-1 ROUGE-2 ROUGE-L
AMI 53.15 22.32 25.67
ICSI 40.41 11.02 19.18

From Scratch

For AMI

Preprocess

(1) Preprocess AMI dataset.

python preprocess.py -train_src data/ami/ami/train.src \
                     -train_tgt data/ami/ami/train.tgt \
                     -train_seg data/ami/ami/train.seg \
                     -train_speaker data/ami/ami/train.speaker \
                     -train_relation data/ami/ami/train.relation \
                     -valid_src data/ami/ami/valid.src \
                     -valid_tgt data/ami/ami/valid.tgt \
                     -valid_seg data/ami/ami/valid.seg \
                     -valid_speaker data/ami/ami/valid.speaker \
                     -valid_relation data/ami/ami/valid.relation \
                     -save_data data/ami/AMI \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/ami/AMI.vocab.pt \
-output_file data/ami/ami_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/ami/ami_qg/train.src \
                     -train_tgt data/ami/ami_qg/train.tgt \
                     -train_seg data/ami/ami_qg/train.seg \
                     -train_speaker data/ami/ami_qg/train.speaker \
                     -train_relation data/ami/ami_qg/train.relation \
                     -save_data data/ami/AMIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) we first pre-train our DDAMS on the pseudo summarization dataset.

  • run the following command to save config file (-save_config).
  • remove -save_config and rerun the command to start the training process.
CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_qg_pretrain/AMI_qg\
           -data data/ami/AMIQG \
           -speaker_type ami \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/ami/ami_embeddings.enc.pt \
           -pre_word_vecs_dec data/ami/ami_embeddings.dec.pt \
           -log_file logs/ami_qg_pretrain.txt \
           -save_config logs/ami_qg_pretrain.txt

(2) fine-tuning on AMI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_final/AMI \
           -data data/ami/AMI \
           -speaker_type ami \
           -train_from ami_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 500 \
           -decay_steps 500 \
           -log_file logs/ami_final.txt \
           -save_config logs/ami_final.txt

Translate

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI

Preprocess

(1) Preprocess ICSI dataset.

python preprocess.py -train_src data/icsi/icsi/train.src \
                     -train_tgt data/icsi/icsi/train.tgt \
                     -train_seg data/icsi/icsi/train.seg \
                     -train_speaker data/icsi/icsi/train.speaker \
                     -train_relation data/icsi/icsi/train.relation \
                     -valid_src data/icsi/icsi/valid.src \
                     -valid_tgt data/icsi/icsi/valid.tgt \
                     -valid_seg data/icsi/icsi/valid.seg \
                     -valid_speaker data/icsi/icsi/valid.speaker \
                     -valid_relation data/icsi/icsi/valid.relation \
                     -save_data data/icsi/ICSI \
                     -src_seq_length 20000 \
                     -src_seq_length_trunc 20000 \
                     -tgt_seq_length 700 \
                     -tgt_seq_length_trunc 700 \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/icsi/ICSI.vocab.pt \
-output_file data/icsi/icsi_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/icsi/icsi_qg/train.src \
                     -train_tgt data/icsi/icsi_qg/train.tgt \
                     -train_seg data/icsi/icsi_qg/train.seg \
                     -train_speaker data/icsi/icsi_qg/train.speaker \
                     -train_relation data/icsi/icsi_qg/train.relation \
                     -save_data data/icsi/ICSIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) pre-training.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_qg_pretrain/ICSI \
           -data data/icsi/ICSIQG \
           -speaker_type icsi \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/icsi/icsi_embeddings.enc.pt \
           -pre_word_vecs_dec data/icsi/icsi_embeddings.dec.pt \
           -log_file logs/icsi_qg_pretrain.txt \
           -save_config logs/icsi_qg_pretrain.txt

(2) fine-tuning on ICSI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_final/ICSI \
           -data data/icsi/ICSI \
           -speaker_type icsi \
           -train_from icsi_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 1000 \
           -decay_steps 100 \
           -save_checkpoint_steps 50 \
           -valid_steps 50 \
           -log_file logs/icsi_final.txt \
           -save_config logs/icsi_final.txt

Translate

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

Test Rouge

(1) Before ROUGE test, we should first remove special tags: .

sed -i 's/ <\/t>//g' xxx.txt
sed -i 's/<t> //g' xxx.txt

(2) Test rouge

python test_rouge.py -c summaries/xxx.txt
python test_rouge_icsi.py -c summaries/xxx.txt
Owner
xcfeng
Ph.D. candidate working on Summarization.
xcfeng
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
LBK 26 Dec 28, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021