Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Overview

Hyperparameter Optimization of Machine Learning Algorithms

This code provides a hyper-parameter optimization implementation for machine learning algorithms, as described in the paper:
L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.

To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization.

This paper and code will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.

Paper

On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
One-column version: arXiv
Two-column version: Elsevier

Quick Navigation

Section 3: Important hyper-parameters of common machine learning algorithms
Section 4: Hyper-parameter optimization techniques introduction
Section 5: How to choose optimization techniques for different machine learning models
Section 6: Common Python libraries/tools for hyper-parameter optimization
Section 7: Experimental results (sample code in "HPO_Regression.ipynb" and "HPO_Classification.ipynb")
Section 8: Open challenges and future research directions
Summary table for Sections 3-6: Table 2: A comprehensive overview of common ML models, their hyper-parameters, suitable optimization techniques, and available Python libraries
Summary table for Sections 8: Table 10: The open challenges and future directions of HPO research

Implementation

Sample code for hyper-parameter optimization implementation for machine learning algorithms is provided in this repository.

Sample code for Regression problems

HPO_Regression.ipynb
Dataset used: Boston-Housing

Sample code for Classification problems

HPO_Classification.ipynb
Dataset used: MNIST

Machine Learning & Deep Learning Algorithms

  • Random forest (RF)
  • Support vector machine (SVM)
  • K-nearest neighbor (KNN)
  • Artificial Neural Networks (ANN)

Hyperparameter Configuration Space

ML Model Hyper-parameter Type Search Space
RF Classifier n_estimators Discrete [10,100]
max_depth Discrete [5,50]
min_samples_split Discrete [2,11]
min_samples_leaf Discrete [1,11]
criterion Categorical 'gini', 'entropy'
max_features Discrete [1,64]
SVM Classifier C Continuous [0.1,50]
kernel Categorical 'linear', 'poly', 'rbf', 'sigmoid'
KNN Classifier n_neighbors Discrete [1,20]
ANN Classifier optimizer Categorical 'adam', 'rmsprop', 'sgd'
activation Categorical 'relu', 'tanh'
batch_size Discrete [16,64]
neurons Discrete [10,100]
epochs Discrete [20,50]
patience Discrete [3,20]
RF Regressor n_estimators Discrete [10,100]
max_depth Discrete [5,50]
min_samples_split Discrete [2,11]
min_samples_leaf Discrete [1,11]
criterion Categorical 'mse', 'mae'
max_features Discrete [1,13]
SVM Regressor C Continuous [0.1,50]
kernel Categorical 'linear', 'poly', 'rbf', 'sigmoid'
epsilon Continuous [0.001,1]
KNN Regressor n_neighbors Discrete [1,20]
ANN Regressor optimizer Categorical 'adam', 'rmsprop'
activation Categorical 'relu', 'tanh'
loss Categorical 'mse', 'mae'
batch_size Discrete [16,64]
neurons Discrete [10,100]
epochs Discrete [20,50]
patience Discrete [3,20]

HPO Algorithms

  • Grid search
  • Random search
  • Hyperband
  • Bayesian Optimization with Gaussian Processes (BO-GP)
  • Bayesian Optimization with Tree-structured Parzen Estimator (BO-TPE)
  • Particle swarm optimization (PSO)
  • Genetic algorithm (GA)

Requirements

Contact-Info

Please feel free to contact me for any questions or cooperation opportunities. I'd be happy to help.

Citation

If you find this repository useful in your research, please cite this article as:

L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.

@article{YANG2020295,
title = "On hyperparameter optimization of machine learning algorithms: Theory and practice",
author = "Li Yang and Abdallah Shami",
volume = "415",
pages = "295 - 316",
journal = "Neurocomputing",
year = "2020",
issn = "0925-2312",
doi = "https://doi.org/10.1016/j.neucom.2020.07.061",
url = "http://www.sciencedirect.com/science/article/pii/S0925231220311693"
}
Owner
Li Yang
Ph.D. Candidate in OC2 Lab at Western University
Li Yang
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022