Gym Threat Defense

Overview

Gym Threat Defense

The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Policies for Partially Observable Spreading Processes on Bayesian Attack Graphs by Miehling, E., Rasouli, M., & Teneketzis, D. (2015). It constitutes a 29-state/observation, 4-action POMDP defense problem.

The environment

The Threat Defense environment

Above, the Threat Defense environment can be observed. None of the notations or the definitions made in the paper will be explained in the text that follows, but rather the benchmark of the toy example will be stated. If these are desired, follow the link found earlier to the paper of Miehling, E., Rasouli, M., & Teneketzis, D. (2015).

Attributes

Of the 12 attributes that the toy example is built up by, two are leaf attributes (1 and 5) and one is a critical attribute (12). To give the network a more realistic appearance, the 12 attributes are intepreted in the paper as:

  1. Vulnerability in WebDAV on machine 1
  2. User access on machine 1
  3. Heap corruption via SSH on machine 1
  4. Root access on machine 1
  5. Buffer overflow on machine 2
  6. Root access on machine 2
  7. Squid portscan on machine 2
  8. Network topology leakage from machine 2
  9. Buffer overflow on machine 3
  10. Root access on machine 3
  11. Buffer overflow on machine 4
  12. Root access on machine 4

Actions

The defender have access to the two following binary actions:

  • u_1: Block WebDAV service
  • u_2: Disconnect machine 2

Thus we have four countermeasures to apply, i.e U = {none, u_1, u_2, u_1 & u_2}.

Cost Function

The cost function is defined as C(x,u) = C(x) + D(u).

C(x) is the state cost, and is 1 if the state, that is x, is a critical attribute. Otherwise it is 0.

D(u) is the availability cost of a countermeasure u, and is 0 if the countermeasure is none, 1 if it is u_1 or u_2 and 5 if it is both u_1 and u_2.

Parameters

The parameters of the problem are:

# The probabilities of detection:
beta = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.7, 0.6, 0.7, 0.85, 0.95]

# The attack probabilities:
alpha_1, alpha_5 = 0.5

# The spread probabilities:
alpha_(1,2), alpha_(2,3), alpha_(4,9), alpha_(5,6), alpha_(7,8), alpha_(8,9), alpha_(8,11), alpha_(10,11) = 0.8

alpha_(3,4), alpha_(6,7), alpha_(9,10), alpha_(11,12) = 0.9

# The discount factor:
gamma = 0.85

# The initial belief vector
pi_0 = [1,0,...,0]

Dependencies

  • OpenAI Gym
  • Numpy

Installation

cd gym-threat-defense
pip install -e .

Rendering

There are two possible rendering alternatives when running the environment. These are:

  • Render to stdout
  • A visual mode which prints the graph and indicate which nodes the attacker has taken over

To do a visual rendering, pass in 'rgb_array' to the render function.

env.render('rgb_array')

GUI rendering

Otherwise, for an ASCII representation to stdout, pass in 'human'.

env.render('human')

Example of the printing, where we can see that the agent took the block and disconnect action. The attacker has enabled five attributes, i.e. nodes, represented by ones, where the non-enabled attributes are represented by zeros. A node with parentheses is a leaf node, also known as an entry-point, a square bracket is a normal non-leaf node and a double bracketed node is a critical node.

Action: Block WebDAV service and Disconnect machine 2
(1) --> [1] --> [0] --> [0]
		      \--> [0] <-- [0] <-- [1] <-- [1] <-- (1)
			   \--> [0] <---/
				  \--> [0] --> [[0]]

By default the mode is set to printing to stdout.

Example

As an example on how to use the Threat Defense environment, we provide a couple of algorithms that uses both configurations of the environment. Read the README in the examples/ directory for more information on which algorithm works with which.

Template

How to create new environments for Gym

Inspiration

banana-gym

gym-soccer

gym-pomdp

Authors

Owner
Hampus Ramström
Hampus Ramström
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022