This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Overview

Hand Cricket

Table of Content

Overview

This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python. Behind the game is a CNN model that is trained to identify hand sign for numbers 0,1,2,3,4,5 & 6. For those who have never played this game, the rules are explained below.

The Game in action

hand-cricket.mov

Installation

  • You need Python (3.6) & git (to clone this repo)
  • git clone [email protected]:abhinavnayak11/Hand-Cricket.git . : Clone this repo
  • cd path/to/Hand-Cricket : cd into the project folder
  • conda env create -f environment.yml : Create a virtual env with all the dependencies
  • conda activate comp-vision : activate the virtual env
  • python src/hand-cricket.py : Run the script

Game rules

Hand signs

  • You can play numbers 0, 1, 2, 3, 4, 5, 6. Their hand sign are shown here

Toss

  • You can choose either odd or even (say you choose odd)
  • Both the players play a number (say players play 3 & 6). Add those numbers (3+6=9).
  • Check if the sum is odd or even. (9 is odd)
  • If the result is same as what you have chosen, you have won the toss, else you have lost. (9 is odd, you chose odd, hence you win)

The Game

  • The person who wins the toss is the batsman, the other player is the bowler. (In the next version of the game, the toss winner will be allowed to chose batting/bowling)
  • Scoring Runs:
    • Both players play a number.
    • The batsman's number is added to his score only when the numbers are different.
    • There is special power given to 0. If batsman plays 0 and bowler plays any number but 0, bowler's number is added to batsman's score
  • Getting out:
    • Batsman gets out when both the players play the same number. Even if both the numbers are 0.
  • Winning/Losing:
    • After both the players have finished their innings, the person scoring more runs wins the game

Game code : hand-cricket.py


Project Details

  1. Data Collection :
    • After failing to find a suitable dataset, I created my own dataset using my phone camera.
    • The dataset contains a total of 1848 images. To ensure generality (i.e prevent overfitting to one type of hand in one type of environment) images were taken with 4 persons, in 6 different lighting conditions, in 3 different background.
    • Sample of images post augmentations are shown below, images
    • Data can be found uploaded at : github | kaggle. Data collection code : collect-data.py
  2. Data preprocessing :
    • A Pytorch dataset was created to handle the preprocessing of the image dataset (code : dataset.py).
    • Images were augmented before training. Following augmentations were used : Random Rotation, Random Horizontal Flip and Normalization. All the images were resized to (128x128).
    • Images were divided into training and validation set. Training set was used to train the model, whereas validation set helped validate the model performance.
  3. Model training :
    • Different pretrained models(resent18, densenet121 etc, which are pre-trained on the ImageNet dataset) from pytorch library were used to train on this dataset. Except the last 2 layers, all the layers were frozen and then trained. With this the pre-trained model helps extracting useful features and the last 2 layers will be fine-tuned to my dataset.
    • Learning rate for training the model was chosen with trial and error. For each model, learning rate was different.
    • Of all the models trained, densnet121 performed the best, with a validation accuracy of 0.994.
    • Training the model : train.py, engine.py, training-notebook

Future Scope

  • Although, this was a fun application, the dataset can be used in applications like sign language recognition.


License: MIT

Owner
Abhinav R Nayak
Aspiring data scientist
Abhinav R Nayak
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022