Neural Ensemble Search for Performant and Calibrated Predictions

Related tags

Deep Learningnes
Overview

Neural Ensemble Search

Introduction

This repo contains the code accompanying the paper:

Neural Ensemble Search for Performant and Calibrated Predictions

Authors: Sheheryar Zaidi*, Arber Zela*, Thomas Elsken, Chris Holmes, Frank Hutter and Yee Whye Teh.

The paper introduces two NES algorithms for finding ensembles with varying baselearner architectures with the aim of producing performant and calibrated predictions for both in-distribution data and during distributional shift.

The code, as provided here, makes use of the SLURM job scheduler, however, one should be able to make changes to run the code without SLURM.

News: Oral presentation at the Uncertainty & Robustness in Deep Learning (UDL) Workshop @ ICML 2020

Setting up virtual environment

First, clone and cd to the root of repo:

git clone https://github.com/automl/nes.git
cd nes

We used Python 3.6 and PyTorch 1.3.1 with CUDA 10.0 (see requirements.txt) for running our experiments. For reproducibility, we recommend using these python and CUDA versions. To set up the virtual environment execute the following (python points to Python 3.6):

python -m venv venv

Then, activate the environment using:

source venv/bin/activate

Now install requirements.txt packages by:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Generating the CIFAR-10-C dataset

To run the experiments on CIFAR-10-C (Hendrycks and Dietterich, ICLR 2019), first generate the shifted data. Begin by downloading the CIFAR-10 dataset by executing the following command:

python -c "import torchvision.datasets as dset; dset.CIFAR10(\"data\", train=True, download=True)"

Next, run the cluster_scripts/generate_corrupted.sh script to generate the shifted data using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/generate_corrupted.sh

$GPU_CLUSTER_PARTITION is the name of the cluster partition you want to submit the array job to.

To run this without SLURM, use the following command which runs sequentially rather than in parallel:

for i in 0..18; do PYTHONPATH=$PWD python data/generate_corrupted.py $i; done

Running the experiments

The structure for running the two Neural Ensemble Search (NES) algorithms, NES-RS and NES-RE consists of three steps: train the base learners, apply ensemble selection and evaluate the final ensembles. We compared to three deep ensemble baselines: DeepEns (RS), DeepEns (DARTS) and DeepEns(AmoebaNet). The latter two simply require training the baselearners and evaluating the ensemble. For DeepEns (RS), we require an extra intermediate step of picking the "incumbent" architecture (i.e. best architecture by validation loss) from a randomly sampled pool of architectures. For a fair and efficient comparison, we use the same randomly sampled (and trained) pool of architectures used by NES-RS.

Running NES

We describe how to run NES algorithms for CIFAR-10-C using the scripts in cluster_scripts/cifar10/; for Fashion-MNIST, proceed similarly but using the scripts in cluster_scripts/fmnist/. For NES algorithms, we first train the base learners in parallel by the commands:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_rs.sh (NES-RS)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_re.sh (NES-RE)

These scripts will run the NES search for 400 iterations using the same hyperparameters as described in the paper to build the pools of base learners. All baselearners (trained network parameters, predictions across all severity levels, etc.) will be saved in experiments/cifar10/baselearners/ (experiments/fmnist/baselearners/ for Fashion-MNIST).

Next, we perform ensemble selection given the pools built by NES-RS and NES-RE using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/ensembles_from_pools.sh

We will return to the final step of ensemble evaluation.

Running Deep Ensemble Baselines

To run the deep ensemble baselines DeepEns (AmoebaNet) and DeepEns (DARTS), we first train the base learners in parallel using the scripts:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_amoeba.sh (DeepEns-AmoebaNet)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_darts.sh (DeepEns-DARTS)

These will train the DARTS and AmoebaNet architectures with different random initializations and save the results again in experiments/cifar10/baselearners/.

To run DeepEns-RS, we first have to extract the incumbent architectures from the random sample produced by the NES-RS run above. For that, run:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/get_incumbents_rs.sh

which saves incumbent architecture ids in experiments/cifar10/outputs/deepens_rs/incumbents.txt. Then run the following loop to train multiple random initializations of each of the incumbent architectures:

for arch_id in $(cat < experiments/cifar10/outputs/deepens_rs/incumbents.txt); do sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_rs.sh $arch_id; done

Evaluating the Ensembles

When all the runs above are complete, all base learners are trained, and we can evaluate all the ensembles (on in-distribution and shifted data). To do that, run the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/evaluate_ensembles.sh

Plotting the results

Finally, after all the aforementioned steps have been completed, we plot the results by running:

bash cluster_scripts/cifar10/plot_data.sh

This will save the plots in experiments/cifar10/outputs/plots.

Figures from the paper

Results on Fashion-MNIST: Loss fmnist

NES with Regularized Evolution: nes-re

For more details, please refer to the original paper.

Citation

@article{zaidi20,
  author  = {Sheheryar Zaidi and Arber Zela and Thomas Elsken and Chris Holmes and Frank Hutter and Yee Whye Teh},
  title   = {{Neural} {Ensemble} {Search} for {Performant} and {Calibrated} {Predictions}},
  journal = {arXiv:2006.08573 {cs.LG}},
  year    = {2020},
  month   = jun,
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

HAN PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network" This repository is for HAN introduced in the

五维空间 140 Nov 23, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022