Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

Overview

stereoEEG2speech

We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning frameworks. The regressed spectograms can then be used to synthesize actual speech (for example) via the flow based generative Waveglow architecture.

Data

Stereotactic electroencephalogaphy (sEEG) utilizes localized, penetrating depth electrodes to measure electrophysiological brain activity. The implanted electrodes generally provide a sparse sampling of a unique set of brain regions including deeper brain structures such as hippocampus, amygdala and insula that cannot be captured by superficial measurement modalities such as electrocorticography (ECoG). As a result, sEEG data provides a promising bases for future research on Brain Computer Interfaces (BCIs) [1].

In this project we use sEEG data from patients with 8 sEEG electrode shafts of which each shaft contains 8-18 contacts. Patients read out sequences of either words or sentences over a duration of 10-30 minutes. Audio is recorded at 44khz and EEG data is recoded at 1khz. As an intermediate representation, we embed the audio data in mel-scale spectrograms of 80 bins.

Network architecture

Existing models in speech synthesis from neural activity in the human brain rely mainly on fully connected and convolutional models (e.g. [2]). Yet, due to the clear temporal structure of this task we here propose the use of RNN based architectures.

Network architecture

EEG to Spectograms

In particular, we provide code for an RNN that presents an adaption NVIDIAs Tacotron2 model [3] to the specific type of data at hand. As such, the model consists of an encoder-decoder architecture with an upstream CNN that allows to downsample and filter the raw EEG input.

(i) CNN: We present data of 112 channels to the network in a sliding window of 200ms with a hop of 15ms at 1024Hz. At first, a three layer convnet parses and downsamples this data about 100Hz and reduces the number of channels to 75. The convolution can be done one or two dimensional.

(ii) RNN: We add sinusoidal positional embeddings (32) to this sequence and feed it into a bi-directional RNN encoder with 3 layers of GRUs which embeds the data in a hidden state of 256 dimensions. Furthermore, we employ a Bahdanau attention layer on the last layer activations of the encoder.

(iii) Prediction: Both results are passed into a one layer GRU decoder which outputs a 256 dimensional representation for each point in time. A fully connected ELU layer followed by a linear layer regresses spectrogram predictions in 80 mel bins. On the one hand, this prediction is passed trough a fully connected Prenet which re-feeds the result into the GRU decoder for the next time step. On the other hand, it is also passed through a five layer 1 d convolutional network. The output is concatenated with the original prediction to give the final spectrogram prediction.

The default loss in our setting is MSE, albeit we also offer a cross entropy based loss calculation in the case of discretized mel bins (e.g. arising from clustering) which can make the task easier for smaller datasets. Moreover, as sEEG electrodes placement usually varies across patients, the model presented here is to be trained on each patient individually. Yet, we also provide code for joint training with a contrastive loss that incentives the model to minimize the embedding distance within but maximize across patients.

Spectograms to audio

The predicted spectrograms can be passed trough any of the state of the art generative models for speech synthesis from spectograms. The current code is designed to create mel spectograms that can be fed right away into the flow based generative WaveGlow model from NVIDIA [4].

Performance

For the task at hand performance can be evaluated in various ways. Obsiously, we track the values of the objective function but we also provide measurements such as the Pearson-r correlation coefficient. This package also includes the DenseNet model from [2] as a baseline. Finally, the produced audio can be examined naturally.

Some results

References

[1] Herff, Christian, Dean J. Krusienski, and Pieter Kubben. "The Potential of Stereotactic-EEG for Brain-Computer Interfaces: Current Progress and Future Directions." Frontiers in Neuroscience 14 (2020): 123.

[2] Angrick, Miguel, et al. "Speech synthesis from ECoG using densely connected 3D convolutional neural networks." Journal of neural engineering 16.3 (2019): 036019.

[3] Shen, Jonathan, et al. "Natural tts synthesis by conditioning wavenet on mel spectrogram predictions." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

[4] Prenger, Ryan, Rafael Valle, and Bryan Catanzaro. "Waveglow: A flow-based generative network for speech synthesis." ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

Owner
PhD Student at ETH Zurich
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022