An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

Overview

MMGEN-FaceStylor

English | 简体中文

Introduction

This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning". We note that since the training code of AgileGAN is not released yet, this repo merely adopts the pipeline from AgileGAN and combines other helpful practices in this literature.

This project is based on MMCV and MMGEN, star and fork is welcomed 🤗 !

Results from FaceStylor trained by MMGEN

Requirements

  • CUDA 10.0 / CUDA 10.1
  • Python 3
  • PyTorch >= 1.6.0
  • MMCV-Full >= 1.3.15
  • MMGeneration >= 0.3.0

Setup

Step-1: Create an Environment

First, we should build a conda virtual environment and activate it.

conda create -n facestylor python=3.7 -y
conda activate facestylor

Suppose you have installed CUDA 10.1, you need to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch=1.6.0 cudatoolkit=10.1 torchvision -c pytorch
pip install requirements.txt

Step-2: Install MMCV and MMGEN

We can run the following command to install MMCV.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html

Of course, you can also refer to the MMCV Docs to install it.

Next, we should install MMGEN containing the basic generative models that will be used in this project.

# Clone the MMGeneration repository.
git clone https://github.com/open-mmlab/mmgeneration.git
cd mmgeneration
# Install build requirements and then install MMGeneration.
pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"
cd ..

Step-3: Clone repo and prepare the data and weights

Now, we need to clone this repo first.

git clone https://github.com/open-mmlab/MMGEN-FaceStylor.git

For convenience, we suggest that you make these folders under MMGEN-FaceStylor.

cd MMGEN-FaceStylor
mkdir data
mkdir work_dirs
mkdir work_dirs/experiments
mkdir work_dirs/pre-trained

Then, you can put or create the soft-link for your data under data folder, and store your experiments under work_dirs/experiments.

For testing and training, you need to download some necessary data provided by AgileGAN and put them under data folder. Or just run this:

wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1AavRxpZJYeCrAOghgtthYqVB06y9QJd3' -O data/shape_predictor_68_face_landmarks.dat

We also provide some pre-trained weights.

Pre-trained Weights
FFHQ-1024 StyleGAN2
FFHQ-256 StyleGAN2
IR-SE50 Model
Encoder for FFHQ-1024 StyleGAN2
Encoder for FFHQ-256 StyleGAN2
MetFace-Oil 1024 StyleGAN2
MetFace-Sketch 1024 StyleGAN2
Toonify 1024 StyleGAN2
Cartoon 256
Bitmoji 256
Comic 256
More Styles on the Way!

Play with MMGEN-FaceStylor

If you have followed the aforementioned steps, we can start to investigate FaceStylor!

Quick Try

To quickly try our project, please run the command below

python demo/quick_try.py demo/src.png --style toonify

Then, you can check the result in work_dirs/demos/agile_result.png.

  • If you want to play with your own photos, you can replace demo/src.png with your photo.
  • If you want to switch to another style, change toonify with other styles. Now, supported styles include toonify, oil, sketch, bitmoji, cartoon, comic.

Inversion

The inversion task will adopt a source image as input and return the most similar image that can be generated by the generator model.

For inversion, you can directly use agilegan_demo like this

python demo/agilegan_demo.py SOURCE_PATH CONFIG [--ckpt CKPT] [--device DEVICE] [--save-path SAVE_PATH]

Here, you should set SOURCE_PATH to your image path, CONFIG to the config file path, and CKPT to checkpoint path.

Take Celebahq-Encoder as an example, you need to download the weights to work_dirs/pre-trained/agile_encoder_celebahq1024x1024_lr_1e-4_150k.pth, put your test image under data run

python demo/agilegan_demo.py demo/src.png configs/agilegan/agile_encoder_celebahq1024x1024_lr_1e-4_150k.py --ckpt work_dirs/pre-trained/agile_encoder_celebahq_lr_1e-4_150k.pth

You will find the result work_dirs/demos/agile_result.png.

Stylization

Since the encoder and decoder of stylization can be trained from different configs, you're supposed to set their ckpts' path in config file. Take Metface-oil as an example, you can see the first two lines in config file.

encoder_ckpt_path = xxx
stylegan_weights = xxx

You should keep your actual weights path in line with your configs. Then run the same command without specifying CKPT.

python demo/agilegan_demo.py SOURCE_PATH CONFIG [--device DEVICE] [--save-path SAVE_PATH]

Train

Here I will tell you how to fine-tune with your own datasets. With only 100-200 images and less than one hour, you can train your own StyleGAN2. The only thing you need to do is to copy an agile_transfer config, like this one. Then modify the imgs_root with your actual data root, choose one of the two commands below to train your own model.

# For distributed training
bash tools/dist_train.sh ${CONFIG_FILE} ${GPUS_NUMBER} \
    --work-dir ./work_dirs/experiments/experiments_name \
    [optional arguments]
# For slurm training
bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${WORK_DIR} \
    [optional arguments]

Training Details

In this part, I will explain some training details, including ADA setting, layer freeze, and losses.

ADA Setting

To use ADA in your discriminator, you can use ADAStyleGAN2Discriminator as your discriminator, and adjust ADAAug setting as follows:

model = dict(
    discriminator=dict(
                 type='ADAStyleGAN2Discriminator',
                 data_aug=dict(type='ADAAug',
                 aug_pipeline=aug_kwargs, # This and below arguments can be set by yourself.
                 update_interval=4,
                 augment_initial_p=0.,
                 ada_target=0.6,
                 ada_kimg=500,
                 use_slow_aug=False)))

Layer Freeze Setting

FreezeD can be used for small data fine-tuning.

FreezeG can be used for pseudo translation.

model = dict(
  freezeD=5, # set to -1 if not need
  freezeG=4 # set to -1 if not need
  )

Losses Setting

In AgileGAN, to preserve the recognizable identity of the generated image, they introduce a similarity loss at the perceptual level. You can adjust the lpips_lambda as follows:

model = dict(lpips_lambda=0.8)

Generally speaking, the larger lpips_lambda is, the better the recognizable identity can be kept.

Datasets Link

To make it easier for you to train your own models, here are some links to publicly available datasets.

Dataset Links
MetFaces
AFHQ
Toonify
photo2cartoon
selfie2anime
face2comics v2
High-Resolution Anime Face
Bitmoji

Applications

We also provide LayerSwap and DNI apps for the trade-off between the structure of the original image and the stylization degree. To this end, you can adjust some parameters to get your desired result.

LayerSwap

When Layer Swapping is applied, the generated images have a higher similarity to the source image than AgileGAN's results.

From Left to Right: Input, Layer-Swap with L = 4, 3, 2, xxx Output

Run this command line to perform layer swapping:

python apps/layerSwap.py source_path modelA modelB \
      [--swap-layer SWAP_LAYER] [--device DEVICE] [--save-path SAVE_PATH]

Here, modelA is set to an PSPEncoderDecoder(config starts with agile_encoder) with FFHQ-StyleGAN2 as the decoder, modelB is set to an PSPEncoderDecoder(config starts with agile_encoder) with desired style generator as the decoder. Generally, the deeper you set swap-layer, the better structure of the original image will be kept.

We also provide a blending script to create and save the mixed weights.

python modelA modelB [--swap-layer SWAP_LAYER] [--show-input SHOW_INPUT] [--device DEVICE] [--save-path SAVE_PATH]

Here, modelA is the base model, where only the deep layers of its decoder will be replaced with modelB's counterpart.

DNI

Deep Network Interpolation between L4 and AgileGAN output

For more precise stylization control, you can try DNI with following commands:

python apps/dni.py source_path modelA modelB [--intervals INTERVALS] [--device DEVICE] [--save-folder SAVE_FOLDER]

Here, modelA and modelB are supposed to be PSPEncoderDecoder(configs start with agile_encoder) with decoders of different stylization degrees. INTERVALS is supposed to be the interpolation numbers.

You can also try applications in MMGEN, like interpolation and SeFA.

Interpolation


Indeed, we have provided an application script to users. You can use apps/interpolate_sample.py with the following commands for unconditional models’ interpolation:

python apps/interpolate_sample.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT} \
    [--show-mode ${SHOW_MODE}] \
    [--endpoint ${ENDPOINT}] \
    [--interval ${INTERVAL}] \
    [--space ${SPACE}] \
    [--samples-path ${SAMPLES_PATH}] \
    [--batch-size ${BATCH_SIZE}] \

For more details, you can read related Docs.

Galary

Toonify





Oil





Cartoon





Comic





Bitmoji





Notions and TODOs

  • For encoder, I experimented with vae-encoder but found no significant improvement for inversion. I follow the "encoding into z plus space" way as the author does. I will release the vae-encoder version later, but I only offer a vanilla encoder this time.
  • For generator, I released vanilla stylegan2-generator, and attribute-aware generator will be released in next version.
  • For training settings, the parameters have slight difference from the paper. And I also tried ADA, freezeD and other methods not mentioned in paper.
  • More styles will be available in the next version.
  • More applications will be available in the next version.
  • We are also considering a web-side application.
  • Further code clean jobs.

Acknowledgments

Codes reference:

Display photos from: https://unsplash.com/t/people

Web demo powered by: https://gradio.app/

License

This project is released under the Apache 2.0 license. Some implementation in MMGEN-FaceStylor are with other licenses instead of Apache2.0. Please refer to LICENSES.md for the careful check, if you are using our code for commercial matters.

Owner
OpenMMLab
OpenMMLab
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022