An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

Overview

MMGEN-FaceStylor

English | ็ฎ€ไฝ“ไธญๆ–‡

Introduction

This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning". We note that since the training code of AgileGAN is not released yet, this repo merely adopts the pipeline from AgileGAN and combines other helpful practices in this literature.

This project is based on MMCV and MMGEN, star and fork is welcomed ๐Ÿค— !

Results from FaceStylor trained by MMGEN

Requirements

  • CUDA 10.0 / CUDA 10.1
  • Python 3
  • PyTorch >= 1.6.0
  • MMCV-Full >= 1.3.15
  • MMGeneration >= 0.3.0

Setup

Step-1: Create an Environment

First, we should build a conda virtual environment and activate it.

conda create -n facestylor python=3.7 -y
conda activate facestylor

Suppose you have installed CUDA 10.1, you need to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch=1.6.0 cudatoolkit=10.1 torchvision -c pytorch
pip install requirements.txt

Step-2: Install MMCV and MMGEN

We can run the following command to install MMCV.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html

Of course, you can also refer to the MMCV Docs to install it.

Next, we should install MMGEN containing the basic generative models that will be used in this project.

# Clone the MMGeneration repository.
git clone https://github.com/open-mmlab/mmgeneration.git
cd mmgeneration
# Install build requirements and then install MMGeneration.
pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"
cd ..

Step-3: Clone repo and prepare the data and weights

Now, we need to clone this repo first.

git clone https://github.com/open-mmlab/MMGEN-FaceStylor.git

For convenience, we suggest that you make these folders under MMGEN-FaceStylor.

cd MMGEN-FaceStylor
mkdir data
mkdir work_dirs
mkdir work_dirs/experiments
mkdir work_dirs/pre-trained

Then, you can put or create the soft-link for your data under data folder, and store your experiments under work_dirs/experiments.

For testing and training, you need to download some necessary data provided by AgileGAN and put them under data folder. Or just run this:

wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1AavRxpZJYeCrAOghgtthYqVB06y9QJd3' -O data/shape_predictor_68_face_landmarks.dat

We also provide some pre-trained weights.

Pre-trained Weights
FFHQ-1024 StyleGAN2
FFHQ-256 StyleGAN2
IR-SE50 Model
Encoder for FFHQ-1024 StyleGAN2
Encoder for FFHQ-256 StyleGAN2
MetFace-Oil 1024 StyleGAN2
MetFace-Sketch 1024 StyleGAN2
Toonify 1024 StyleGAN2
Cartoon 256
Bitmoji 256
Comic 256
More Styles on the Way!

Play with MMGEN-FaceStylor

If you have followed the aforementioned steps, we can start to investigate FaceStylor!

Quick Try

To quickly try our project, please run the command below

python demo/quick_try.py demo/src.png --style toonify

Then, you can check the result in work_dirs/demos/agile_result.png.

  • If you want to play with your own photos, you can replace demo/src.png with your photo.
  • If you want to switch to another style, change toonify with other styles. Now, supported styles include toonify, oil, sketch, bitmoji, cartoon, comic.

Inversion

The inversion task will adopt a source image as input and return the most similar image that can be generated by the generator model.

For inversion, you can directly use agilegan_demo like this

python demo/agilegan_demo.py SOURCE_PATH CONFIG [--ckpt CKPT] [--device DEVICE] [--save-path SAVE_PATH]

Here, you should set SOURCE_PATH to your image path, CONFIG to the config file path, and CKPT to checkpoint path.

Take Celebahq-Encoder as an example, you need to download the weights to work_dirs/pre-trained/agile_encoder_celebahq1024x1024_lr_1e-4_150k.pth, put your test image under data run

python demo/agilegan_demo.py demo/src.png configs/agilegan/agile_encoder_celebahq1024x1024_lr_1e-4_150k.py --ckpt work_dirs/pre-trained/agile_encoder_celebahq_lr_1e-4_150k.pth

You will find the result work_dirs/demos/agile_result.png.

Stylization

Since the encoder and decoder of stylization can be trained from different configs, you're supposed to set their ckpts' path in config file. Take Metface-oil as an example, you can see the first two lines in config file.

encoder_ckpt_path = xxx
stylegan_weights = xxx

You should keep your actual weights path in line with your configs. Then run the same command without specifying CKPT.

python demo/agilegan_demo.py SOURCE_PATH CONFIG [--device DEVICE] [--save-path SAVE_PATH]

Train

Here I will tell you how to fine-tune with your own datasets. With only 100-200 images and less than one hour, you can train your own StyleGAN2. The only thing you need to do is to copy an agile_transfer config, like this one. Then modify the imgs_root with your actual data root, choose one of the two commands below to train your own model.

# For distributed training
bash tools/dist_train.sh ${CONFIG_FILE} ${GPUS_NUMBER} \
    --work-dir ./work_dirs/experiments/experiments_name \
    [optional arguments]
# For slurm training
bash tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG} ${WORK_DIR} \
    [optional arguments]

Training Details

In this part, I will explain some training details, including ADA setting, layer freeze, and losses.

ADA Setting

To use ADA in your discriminator, you can use ADAStyleGAN2Discriminator as your discriminator, and adjust ADAAug setting as follows:

model = dict(
    discriminator=dict(
                 type='ADAStyleGAN2Discriminator',
                 data_aug=dict(type='ADAAug',
                 aug_pipeline=aug_kwargs, # This and below arguments can be set by yourself.
                 update_interval=4,
                 augment_initial_p=0.,
                 ada_target=0.6,
                 ada_kimg=500,
                 use_slow_aug=False)))

Layer Freeze Setting

FreezeD can be used for small data fine-tuning.

FreezeG can be used for pseudo translation.

model = dict(
  freezeD=5, # set to -1 if not need
  freezeG=4 # set to -1 if not need
  )

Losses Setting

In AgileGAN, to preserve the recognizable identity of the generated image, they introduce a similarity loss at the perceptual level. You can adjust the lpips_lambda as follows:

model = dict(lpips_lambda=0.8)

Generally speaking, the larger lpips_lambda is, the better the recognizable identity can be kept.

Datasets Link

To make it easier for you to train your own models, here are some links to publicly available datasets.

Dataset Links
MetFaces
AFHQ
Toonify
photo2cartoon
selfie2anime
face2comics v2
High-Resolution Anime Face
Bitmoji

Applications

We also provide LayerSwap and DNI apps for the trade-off between the structure of the original image and the stylization degree. To this end, you can adjust some parameters to get your desired result.

LayerSwap

When Layer Swapping is applied, the generated images have a higher similarity to the source image than AgileGAN's results.

From Left to Right: Input, Layer-Swap with L = 4, 3, 2, xxx Output

Run this command line to perform layer swapping:

python apps/layerSwap.py source_path modelA modelB \
      [--swap-layer SWAP_LAYER] [--device DEVICE] [--save-path SAVE_PATH]

Here, modelA is set to an PSPEncoderDecoder(config starts with agile_encoder) with FFHQ-StyleGAN2 as the decoder, modelB is set to an PSPEncoderDecoder(config starts with agile_encoder) with desired style generator as the decoder. Generally, the deeper you set swap-layer, the better structure of the original image will be kept.

We also provide a blending script to create and save the mixed weights.

python modelA modelB [--swap-layer SWAP_LAYER] [--show-input SHOW_INPUT] [--device DEVICE] [--save-path SAVE_PATH]

Here, modelA is the base model, where only the deep layers of its decoder will be replaced with modelB's counterpart.

DNI

Deep Network Interpolation between L4 and AgileGAN output

For more precise stylization control, you can try DNI with following commands:

python apps/dni.py source_path modelA modelB [--intervals INTERVALS] [--device DEVICE] [--save-folder SAVE_FOLDER]

Here, modelA and modelB are supposed to be PSPEncoderDecoder(configs start with agile_encoder) with decoders of different stylization degrees. INTERVALS is supposed to be the interpolation numbers.

You can also try applications in MMGEN, like interpolation and SeFA.

Interpolation


Indeed, we have provided an application script to users. You can use apps/interpolate_sample.py with the following commands for unconditional modelsโ€™ interpolation:

python apps/interpolate_sample.py \
    ${CONFIG_FILE} \
    ${CHECKPOINT} \
    [--show-mode ${SHOW_MODE}] \
    [--endpoint ${ENDPOINT}] \
    [--interval ${INTERVAL}] \
    [--space ${SPACE}] \
    [--samples-path ${SAMPLES_PATH}] \
    [--batch-size ${BATCH_SIZE}] \

For more details, you can read related Docs.

Galary

Toonify





Oil





Cartoon





Comic





Bitmoji





Notions and TODOs

  • For encoder, I experimented with vae-encoder but found no significant improvement for inversion. I follow the "encoding into z plus space" way as the author does. I will release the vae-encoder version later, but I only offer a vanilla encoder this time.
  • For generator, I released vanilla stylegan2-generator, and attribute-aware generator will be released in next version.
  • For training settings, the parameters have slight difference from the paper. And I also tried ADA, freezeD and other methods not mentioned in paper.
  • More styles will be available in the next version.
  • More applications will be available in the next version.
  • We are also considering a web-side application.
  • Further code clean jobs.

Acknowledgments

Codes reference:

Display photos from: https://unsplash.com/t/people

Web demo powered by: https://gradio.app/

License

This project is released under the Apache 2.0 license. Some implementation in MMGEN-FaceStylor are with other licenses instead of Apache2.0. Please refer to LICENSES.md for the careful check, if you are using our code for commercial matters.

Owner
OpenMMLab
OpenMMLab
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021์€ โ€˜2021 ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์‚ฌ์—…โ€™์„ ํ†ตํ•ด ๋งŒ๋“ค์–ด์ง„ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹น๋‡จ๋ณ‘์„ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ A

2 Dec 27, 2021
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022