Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

Overview

ModelNet-C

Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com/view/modelnetc/home

Benchmarking and Analyzing Point Cloud Classification under Corruptions
Jiawei Ren, Liang Pan, Ziwei Liu

arXiv 2022

corruptions

ModelNet-C [Download Link]

Get Started

Step 0. Clone the Repo

git clone https://github.com/jiawei-ren/ModelNet-C.git
cd ModelNet-C

Step 1. Set Up the Environment

Set up the environment by:

conda create --name modelnetc python=3.7.5
conda activate modelnetc
pip install -r requirements.txt
cd SimpleView/pointnet2_pyt && pip install -e . && cd -
pip install -e modelnetc_utils

Step 2. Prepare Data

Download ModelNet-C by:

cd data
gdown https://drive.google.com/uc?id=1KE6MmXMtfu_mgxg4qLPdEwVD5As8B0rm
unzip modelnet_c.zip && cd ..

Alternatively, you may download ModelNet40-C manually and extract it under data.

Step 3. Download Pretrained Models

Download pretrained models by

gdown https://drive.google.com/uc?id=11RONLZGg0ezxC16n57PiEZouqC5L0b_h
unzip pretrained_models.zip

Alternatively, you may download pretrained models manually and extract it under root directory.

Benchmark on ModelNet-C

Evaluation Commands

Evaluation commands are provided in EVALUATE.md.

Benchmark Results

Method Reference Standalone mCE Clean OA
DGCNN Wang et al. Yes 1.000 0.926
PointNet Qi et al. Yes 1.422 0.907
PointNet++ Qi et al. Yes 1.072 0.930
RSCNN Liu et al. Yes 1.130 0.923
SimpleView Goyal et al. Yes 1.047 0.939
GDANet Xu et al. Yes 0.892 0.934
CurveNet Xiang et al. Yes 0.927 0.938
PAConv Xu et al. Yes 1.104 0.936
PCT Guo et al. Yes 0.925 0.930
RPC Ren et al. Yes 0.863 0.930
DGCNN+PointWOLF Kim et al. No 0.814 0.926
DGCNN+RSMix Lee et al. No 0.745 0.930
DGCNN+WOLFMix Ren et al. No 0.590 0.932
GDANet+WOLFMix Ren et al. No 0.571 0.934

*Standalone indicates if the method is a standalone architecture or a combination with augmentation or pretrain.

Todos

  • PointMixup
  • OcCo
  • PointBERT

Cite ModelNet-C

@article{
    ren2022modelnetc,
    title={Benchmarking and Analyzing Point Cloud Classification under Corruptions},
    author={Jiawei Ren and Liang Pan and Ziwei Liu},
    journal={arXiv:2202.03377},
    year={2022},
}

Acknowledgement

This codebase heavily borrows codes from the following repositories:

Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022