Contrastive Learning with Non-Semantic Negatives

Overview

Contrastive Learning with Non-Semantic Negatives

This repository is the official implementation of Robust Contrastive Learning Using Negative Samples with Diminished Semantics. Contrastive learning utilizes positive pairs which preserve semantic information while perturbing superficial features in the training images. Similarly, we propose to generate negative samples to make the model more robust, where only the superfluous instead of the semantic features are preserved.

Preparation

Install PyTorch and check preprocess/ for ImageNet-100 and ImageNet-Texture preprocessing scripts.

Training

The following code is used to pre-train MoCo-v2 + patch / texture-based NS. The major code is developed with minimal modifications from the official implementation.

python moco-non-sem-neg.py -a resnet50 --lr 0.03 --batch-size 128 --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp --moco-t 0.2 --aug-plus --cos --moco-k 16384 \
  --robust nonsem --num-nonsem 1 --alpha 2 --epochs 200 --patch-ratio 16 72 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200  \
  /path/to/imagenet-100/ 

python moco-non-sem-neg.py -a resnet50 --lr 0.03 --batch-size 128 --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp --moco-t 0.2 --aug-plus --cos --moco-k 16384 \
  --robust texture_syn --num-nonsem 1 --alpha 2 --epochs 200 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_texture_nn1_alpha2_epoch200 \
  /path/to/imagenet-100-texture/ 
  • Change /path/to/imagenet-100/ with the ImageNet-100 dataset directory.
  • Change --alpha and -moco-k to reproduce results with different configurations.

Linear Evaluation

Run following code is used to reproduce MoCo-v2 + patch-based NS model reported in Table 1.

python main_lincls.py -a resnet50 --lr 10.0 --batch-size 128 --epochs 60 \
  --pretrained ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 \
  --ckpt_path ./ckpts/mocov2_mocok16384_bs128_lr0.03_nonsem_16_72_noaug_nn1_alpha2_epoch200 \
  /path/to/imagenet-100/ 

Pre-trained Models

You can download pretrained models here:

moco-k alpha ImageNet-100 Corruption Sketch Stylized Rendition Checkpoints
MoCo-v2 16384 - 77.88±0.28 43.08±0.27 28.24±0.58 16.20±0.55 32.92±0.12 Run1, Run2, Run3
+ Texture 16384 2 77.76±0.17 43.58±0.33 29.11±0.39 16.59±0.17 33.36±0.15 Run1, Run2, Run3
+ Patch 16384 2 79.35±0.12 45.13±0.35 31.76±0.88 17.37±0.19 34.78±0.15 Run1, Run2, Run3
+ Patch 16384 3 75.58±0.52 44.45±0.15 34.03±0.58 18.60±0.26 36.89±0.11 Run1, Run2, Run3
MoCo-v2 8192 - 77.73±0.38 43.22±0.39 28.45±0.36 16.83±0.12 33.19±0.44 Run1, Run2, Run3
+ Patch 8192 2 79.54±0.32 45.48±0.20 33.36±0.45 17.81±0.32 36.31±0.37 Run1, Run2, Run3
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022