A Deep Reinforcement Learning Framework for Stock Market Trading

Overview

DQN-Trading

This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two papers:

The deep reinforcement learning algorithm used here is Deep Q-Learning.

Acknowledgement

Requirements

Install pytorch using the following commands. This is for CUDA 11.1 and python 3.8:

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
  • python = 3.8
  • pandas = 1.3.2
  • numpy = 1.21.2
  • matplotlib = 3.4.3
  • cython = 0.29.24
  • scikit-learn = 0.24.2

TODO List

  • Right now this project does not have a code for getting user hyper-parameters from terminal and running the code. We preferred writing a jupyter notebook (Main.ipynb) in which you can set the input data, the model, along with setting the hyper-parameters.

  • The project also does not have a code to do Hyper-parameter search (its easy to implement).

  • You can also set the seed for running the experiments in the original code for training the models.

Developers' Guidelines

In this section, I briefly explain different parts of the project and how to change each. The data for the project downloaded from Yahoo Finance where you can search for a specific market there and download your data under the Historical Data section. Then you create a directory with the name of the stock under the data directory and put the .csv file there.

The DataLoader directory contains files to process the data and interact with the RL agent. The DataLoader.py loads the data given the folder name under Data folder and also the name of the .csv file. For this, you should use the YahooFinanceDataLoader class for using data downloaded from Yahoo Finance.

The Data.py file is the environment that interacts with the RL agent. This file contains all the functionalities used in a standard RL environment. For each agent, I developed a class inherited from the Data class that only differs in the state space (consider that states for LSTM and convolutional models are time-series, while for other models are simple OHLCs). In DataForPatternBasedAgent.py the states are patterns extracted using rule-based methods in technical analysis. In DataAutoPatternExtractionAgent.py states are Open, High, Low, and Close prices (plus some other information about the candle-stick like trend, upper shadow, lower shadow, etc). In DataSequential.py as it is obvious from the name, the state space is time-series which is used in both LSTM and Convolutional models. DataSequencePrediction.py was an idea for feeding states that have been predicted using an LSTM model to the RL agent. This idea is raw and needs to be developed.

Where ever we used encoder-decoder architecture, the decoder is the DQN agent whose neural network is the same across all the models.

The DeepRLAgent directory contains the DQN model without encoder part (VanillaInput) whose data loader corresponds to DataAutoPatternExtractionAgent.py and DataForPatternBasedAgent.py; an encoder-decoder model where the encoder is a 1d convolutional layer added to the decoder which is DQN agent under SimpleCNNEncoder directory; an encoder-decoder model where encoder is a simple MLP model and the decoder is DQN agent under MLPEncoder directory.

Under the EncoderDecoderAgent there exist all the time-series models, including CNN (two-layered 1d CNN as encoder), CNN2D (a single-layered 2d CNN as encoder), CNN-GRU (the encoder is a 1d CNN over input and then a GRU on the output of CNN. The purpose of this model is that CNN extracts features from each candlestick, thenGRU extracts temporal dependency among those extracted features.), CNNAttn (A two-layered 1d CNN with attention layer for putting higher emphasis on specific parts of the features extracted from the time-series data), and a GRU encoder which extracts temporal relations among candles. All of these models use DataSequential.py file as environment.

For running each agent, please refer to the Main.py file for instructions on how to run each agent and feed data. The Main.py file also has code for plotting results.

The Objects directory contains the saved models from our experiments for each agent.

The PatternDetectionCandleStick directory contains Evaluation.py file which has all the evaluation metrics used in the paper. This file receives the actions from the agents and evaluate the result of the strategy offered by each agent. The LabelPatterns.py uses rule-based methods to generate buy or sell signals. Also Extract.py is another file used for detecting wellknown candlestick patterns.

RLAgent directory is the implementation of the traditional RL algorithm SARSA-λ using cython. In order to run that in the Main.ipynb you should first build the cython file. In order to do that, run the following script inside it's directory in terminal:

python setup.py build_ext --inplace

This works for both linux and windows.

For more information on the algorithms and models, please refer to the original paper. You can find them in the references.

If you had any questions regarding the paper, code, or you wanted to contribute, please send me an email: [email protected]

References

@article{taghian2020learning,
  title={Learning financial asset-specific trading rules via deep reinforcement learning},
  author={Taghian, Mehran and Asadi, Ahmad and Safabakhsh, Reza},
  journal={arXiv preprint arXiv:2010.14194},
  year={2020}
}

@article{taghian2021reinforcement,
  title={A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules},
  author={Taghian, Mehran and Asadi, Ahmad and Safabakhsh, Reza},
  journal={arXiv preprint arXiv:2101.03867},
  year={2021}
}
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022