Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Related tags

Deep LearningUFLoss
Overview

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Official github repository for the paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss. In this work, a novel patch-based Unsupervised Feature loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. In-vivo experiments indicate that adding the UFLoss encourages sharper edges with higher overall image quality under DL-based reconstruction framework. Our implementations are in PyTorch

Installation

To use this package, install the required python packages (tested with python 3.8 on Ubuntu 20.04 LTS):

pip install -r requirements.txt

Dataset

We used a subset of FastMRI knee dataset for the training and evaluation. We used E-SPIRiT to pre-compute sensitivity maps using BART. Post-processed data (including Sens Maps, Coil combined images) and pre-trained model can be requested by emailing [email protected].

Update We provide our data-preprocessing code at UFloss_training/data_preprocessing.py. This script computes the sensitivity maps and performs data normalization and coil combination. BART toolbox is required for computing the sensitivity maps. Follow the installation instructions on the website and add the following lines to your .bashrc file.

/python/" export PATH=" :$PATH"">
export PYTHONPATH="${PYTHONPATH}:
    
     /python/
     "
    
export PATH="
    
     :
     $PATH
     "
    

To run the data-preprocessing code, download and unzip the fastMRI Multi-coil knee dataset. Simplu run

python data_preprocessing.py -l <path to your fastMRI multi-coil dataset> -t <target directory> -c <size for your E-SPIRiT calibration region>

Step 0: Patch Extraction

To extract patches from the fully-smapled training data, go to the UFloss_training/ folder and run patch_extraction.py to extract patches. Please specify the directories of the training dataset and the target folder. Instructions are avaible by runing:

python patch_extraction.py -h

Step 1: Train the UFLoss feature mapping network

To train the UFLoss feature mapping network, go to the UFloss_training/ folder and run patch_learning.py. We provide a demo training script to perform the training on fully-sampled patches:

bash launch_training_patch_learning.sh

Visualiztion (Patch retrival results, shown below) script will be available soon.

Step 2: Train the DL-based reconstruction with UFLoss

To train the DL-based reconstruction with UFLoss, we provide our source code here at DL_Recon_UFLoss/. We adoped MoDL as our DL-based reconstruction network. We provide training scripts for MoDL with and without UFLoss at DL_Recon_UFLoss/models/unrolled2D/scripts:

bash launch_training_MoDL_traditional_UFLoss_256_demo.sh

You can easily paly around with the parameters by editing the training script. One representative reconstruction results is shown as below.

Perform inference with the trained model

To perform the inference reconstruction on the testing set, we provide an inference script at DL_Recon_UFLoss/models/unrolled2D/inference_ufloss.py. run the following command for inference:

python inference_ufloss.py --data-path <Path to the dataset> 
                        --device-num <Which device to train on>
                        --exp-dir <Path where the results should be saved>
                        --checkpoint <Path to an existing checkpoint>

Acknoledgements

Reconstruction code borrows heavily from fastMRI Github repo and DL-ESPIRiT by Christopher Sandino. This work is a colaboration between UC Berkeley and GE Healthcare. Please contact [email protected] if you have any questions.

Citation

If you find this code useful for your research, please consider citing our paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss:

@article{wang2021high,
  title={High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss},
  author={Wang, Ke and Tamir, Jonathan I and De Goyeneche, Alfredo and Wollner, Uri and Brada, Rafi and Yu, Stella and Lustig, Michael},
  journal={arXiv preprint arXiv:2108.12460},
  year={2021}
}
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022