A Transformer-Based Siamese Network for Change Detection

Overview

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022)

Wele Gedara Chaminda Bandara, Vishal M. Patel

Here, we provide the pytorch implementation of the paper: A Transformer-Based Siamese Network for Change Detection.

For more information, please see our paper at arxiv.

image-20210228153142126

Requirements

Python 3.8.0
pytorch 1.10.1
torchvision 0.11.2
einops  0.3.2

Please see requirements.txt for all the other requirements.

Installation

Clone this repo:

git clone https://github.com/wgcban/ChangeFormer.git
cd ChangeFormer

Quick Start on LEVIR dataset

We have some samples from the LEVIR-CD dataset in the folder samples_LEVIR for a quick start.

Firstly, you can download our ChangeFormerV6 pretrained model——by DropBox. After downloaded the pretrained model, you can put it in checkpoints/ChangeFormer_LEVIR/.

Then, run a demo to get started as follows:

python demo_LEVIR.py

After that, you can find the prediction results in samples/predict_LEVIR.

Quick Start on DSFIN dataset

We have some samples from the DSFIN-CD dataset in the folder samples_DSFIN for a quick start.

Firstly, you can download our ChangeFormerV6 pretrained model——by DropBox. After downloaded the pretrained model, you can put it in checkpoints/ChangeFormer_LEVIR/.

Then, run a demo to get started as follows:

python demo_DSFIN.py

After that, you can find the prediction results in samples/predict_DSFIN.

Train on LEVIR-CD

You can find the training script run_ChangeFormer_LEVIR.sh in the folder scripts. You can run the script file by sh scripts/run_ChangeFormer_LEVIR.sh in the command environment.

The detailed script file run_ChangeFormer_LEVIR.sh is as follows:

#!/usr/bin/env bash

#GPUs
gpus=0

#Set paths
checkpoint_root=/media/lidan/ssd2/ChangeFormer/checkpoints
vis_root=/media/lidan/ssd2/ChangeFormer/vis
data_name=LEVIR


img_size=256    
batch_size=16   
lr=0.0001         
max_epochs=200
embed_dim=256

net_G=ChangeFormerV6        #ChangeFormerV6 is the finalized verion

lr_policy=linear
optimizer=adamw                 #Choices: sgd (set lr to 0.01), adam, adamw
loss=ce                         #Choices: ce, fl (Focal Loss), miou
multi_scale_train=True
multi_scale_infer=False
shuffle_AB=False

#Initializing from pretrained weights
pretrain=/media/lidan/ssd2/ChangeFormer/pretrained_segformer/segformer.b2.512x512.ade.160k.pth

#Train and Validation splits
split=train         #trainval
split_val=test      #test
project_name=CD_${net_G}_${data_name}_b${batch_size}_lr${lr}_${optimizer}_${split}_${split_val}_${max_epochs}_${lr_policy}_${loss}_multi_train_${multi_scale_train}_multi_infer_${multi_scale_infer}_shuffle_AB_${shuffle_AB}_embed_dim_${embed_dim}

CUDA_VISIBLE_DEVICES=1 python main_cd.py --img_size ${img_size} --loss ${loss} --checkpoint_root ${checkpoint_root} --vis_root ${vis_root} --lr_policy ${lr_policy} --optimizer ${optimizer} --pretrain ${pretrain} --split ${split} --split_val ${split_val} --net_G ${net_G} --multi_scale_train ${multi_scale_train} --multi_scale_infer ${multi_scale_infer} --gpu_ids ${gpus} --max_epochs ${max_epochs} --project_name ${project_name} --batch_size ${batch_size} --shuffle_AB ${shuffle_AB} --data_name ${data_name}  --lr ${lr} --embed_dim ${embed_dim}

Train on DSFIN-CD

Follow the similar procedure mentioned for LEVIR-CD. Use run_ChangeFormer_DSFIN.sh in scripts folder to train on DSFIN-CD.

Evaluate on LEVIR

You can find the evaluation script eval_ChangeFormer_LEVIR.sh in the folder scripts. You can run the script file by sh scripts/eval_ChangeFormer_LEVIR.sh in the command environment.

The detailed script file eval_ChangeFormer_LEVIR.sh is as follows:

#!/usr/bin/env bash

gpus=0

data_name=LEVIR
net_G=ChangeFormerV6 #This is the best version
split=test
vis_root=/media/lidan/ssd2/ChangeFormer/vis
project_name=CD_ChangeFormerV6_LEVIR_b16_lr0.0001_adamw_train_test_200_linear_ce_multi_train_True_multi_infer_False_shuffle_AB_False_embed_dim_256
checkpoints_root=/media/lidan/ssd2/ChangeFormer/checkpoints
checkpoint_name=best_ckpt.pt
img_size=256
embed_dim=256 #Make sure to change the embedding dim (best and default = 256)

CUDA_VISIBLE_DEVICES=0 python eval_cd.py --split ${split} --net_G ${net_G} --embed_dim ${embed_dim} --img_size ${img_size} --vis_root ${vis_root} --checkpoints_root ${checkpoints_root} --checkpoint_name ${checkpoint_name} --gpu_ids ${gpus} --project_name ${project_name} --data_name ${data_name}

Evaluate on LEVIR

Follow the same evaluation procedure mentioned for LEVIR-CD. You can find the evaluation script eval_ChangeFormer_DSFIN.sh in the folder scripts. You can run the script file by sh scripts/eval_ChangeFormer_DSFIN.sh in the command environment.

Dataset Preparation

Data structure

"""
Change detection data set with pixel-level binary labels;
├─A
├─B
├─label
└─list
"""

A: images of t1 phase;

B:images of t2 phase;

label: label maps;

list: contains train.txt, val.txt and test.txt, each file records the image names (XXX.png) in the change detection dataset.

Data Download

LEVIR-CD: https://justchenhao.github.io/LEVIR/

WHU-CD: https://study.rsgis.whu.edu.cn/pages/download/building_dataset.html

DSIFN-CD: https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images/tree/master/dataset

License

Code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.

Citation

If you use this code for your research, please cite our paper:

@Article{
}

References

Appreciate the work from the following repositories:

Comments
  • How could use?

    How could use?

    Hi, I'm very interested in using your code in my project. I was able to run demo scripts. Now I want to use your code for my own data, but unfortunately I do not know how I can do this on my data. I put them in files A, B But I think I need guidance to test Please tell me how I can find a difference for my images (I am a newcomer, thank you)

    help wanted 
    opened by p00uya 23
  • How to train more classes label instead of two?

    How to train more classes label instead of two?

    Hi I really appreciate your work.Now I want to train on changesim,a dataset with 4 classes label ,such as "missing","new","ratation","replaced object". I tried change n_class , but it didnt work. what should I do to train on a dataset which is more than 2 classes? thx~

    help wanted 
    opened by xgyyao 14
  • Question about training on LEVIR-CD

    Question about training on LEVIR-CD

    Hi , I found when i load the pretrained model(trained on ade160k dataset), the keys of checkpoint are not matched. The pretrained model: BFA7F864-1D89-4f31-9F0F-5C87B1584CF8 The self.net_G: image

    So the keys of pretrained model are all missing keys.

    question 
    opened by Youskrpig 10
  • About using a new dataset

    About using a new dataset

    opened by SnycradJuice 8
  • DSIFN accuracy

    DSIFN accuracy

    Hi wgcban, I notice that DSIFN-CD dataset has much higher accuracy than BIT[4] (IoU from BIT 52.97% to ChangeFormer 76.48%). On another dataset, LEVIR-CD, the difference is not as large as DSIFN-CD. Could you please explain the main source of the large improvement on DSIFN-CD? e.g. training strategy, data augmentation, model structure... Thanks Wesley

    question 
    opened by WesleyZhang1991 8
  • Some Questions about Code and Paper Details

    Some Questions about Code and Paper Details

    Hi~ Thx for your great work, :clap: it's really inspired a lot in siamese Transformer network realizing.

    However, I still have some questions about the code implementation and the details of the paper.

    1. In the code, the implementation of Sequence Reduction was completed through the Conv2d non-overlapping cutting feature map before MHSA. https://github.com/wgcban/ChangeFormer/blob/9025e26417cf8f10f29a48f34a05758498216465/models/ChangeFormer.py#L316 The effect of the implementation is similar to that of the first shape and then linear projection in the paper, but this code implementation will result in a reduction of the sequence length R^2 times (similar to the idea of cutting the image into 16 * 16 patches at the beginning of the ViT). However, the formula 2 in the paper shows that the reduction is times. Is there an error here?

    2. In this code:https://github.com/wgcban/ChangeFormer/blob/9025e26417cf8f10f29a48f34a05758498216465/models/ChangeFormer.py#L507 the actual code implements two skips connected. In the pink block diagram of Transformer Block explained in the upper right corner of Fig1 in the paper, do you need to draw two skips connected?(Add skip bypass connecting Sequence Reduction input an MHSA output)

    3. About Depth-wise Conv in Transformer Block as PE.Why you do this? How to realize position coding(Can you explain it)? Why is this effective?

    4. patch_block1 is not used in the code. What is this module used for? Why is it inconsistent with the previous block1 dimension? (dim=embed_dims[1] and dim=embed_dims[0] respectively)https://github.com/wgcban/ChangeFormer/blob/9025e26417cf8f10f29a48f34a05758498216465/models/ChangeFormer.py#L52

    Looking forward to your early reply!:smiley:

    opened by zafirshi 6
  • about multi classes

    about multi classes

    hi, I tried to train my personal data with 4 classes = {0,1,2,3}

    pixels are like

    0000000002220000 0000000002200000 0000000002000000 0010000000000000 0111110000000000 1111000000000000

    grayscale.

    when I train this data, the accuracy converges to 0.5 and never changes. Is there any problem that I miss?

    what I changed is only n_classes = 4

    thanks.

    opened by g7199 5
  • The code runs too long

    The code runs too long

    Hello, it's a nice code. It takes me a lot of time to run the program using the LEVIR-CD-256 dataset you have processed. Is this normal? How long will it take you to train the model? Looking forward to your early reply!

    opened by Mengtao-ship 5
  • How to

    How to

    Hi I really appreciate your work. I have a few questions about the model. First of all is it possible to modify the size of the input images? Then how can we retrain the model with our data? I noticed that the model detects the changes appeared in the image B. How can we generate a map for the disappearance of elements in A? Thanks. I remain open to your answers and suggestions.

    question 
    opened by choumie 5
  • A question about the difference module

    A question about the difference module

    HI~,after reading your paper, I still can't understand your design of Difference Module which consists of Conv2D, ReLU and BatchNorm2d,What is the reason for this design? in the eqn: Fidiff = BN(ReLU(Conv2D3×3(Cat(Fipre, Fipost)))) in the code: nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), nn.ReLU() Looking forward to your early reply!

    opened by Herxinsasa 4
  • F1 values of WHU-CD and DSIFN-CD

    F1 values of WHU-CD and DSIFN-CD

    Hello, I am trying to reproduce the BIT-CD model code, and it looks incorrect when using WHU-CD dataset as well as DSIFN-CD dataset, and the result appears too high than your result. But it looks normal when using LEVID-CD dataset. Do I need to change the pre-training?

    opened by yuwanting828 4
  • A question about visualization.

    A question about visualization.

    Hello again! I'm training the net on the former dataset,a problem happened when the trainer saves visualization, the vis_pred, vis_gt of saved images do not look normal. Though I found your visualization method right here https://github.com/wgcban/ChangeFormer/blob/9025e26417cf8f10f29a48f34a05758498216465/models/trainer.py#L220-L232 still don't know how to make it fit to save multiple classes gt and pred images.

    opened by SnycradJuice 0
  • multi class

    multi class

    You want to perform multiclass classification. Even if I change the code to args.n_class = 9, the class is predicted to be 2. What should I do? sry im korean 캡처 It shouldn't be possible to modify only n_class, but should there be multiple classes of labels?

    opened by taemin6697 20
Releases(v0.1.0)
Owner
Wele Gedara Chaminda Bandara
I am a second-year Ph.D. student in the ECE at Johns Hopkins University.
Wele Gedara Chaminda Bandara
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022