Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Overview



The templated deep learning framework, enabling framework-agnostic functions, layers and libraries.

Contents

Overview

What is Ivy?

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries and layers can then be written using Ivy, with simultaneous support for all frameworks. Ivy currently supports Jax, TensorFlow, PyTorch, MXNet and Numpy. Check out the docs for more info!

Ivy Libraries

There are a host of derived libraries written in Ivy, in the areas of mechanics, 3D vision, robotics, differentiable memory, and differentiable gym environments. Click on the icons below for their respective github pages.


Quick Start

Ivy can be installed like so: pip install ivy-core

To get started, you can immediately use ivy with your deep learning framework of choice. In the example below we show how ivy's concatenation function is compatible with tensors from different frameworks.

import jax.numpy as jnp
import tensorflow as tf
import numpy as np
import mxnet as mx
import torch

import ivy

jax_concatted = ivy.concatenate((jnp.ones((1,)), jnp.ones((1,))), -1)
tf_concatted = ivy.concatenate((tf.ones((1,)), tf.ones((1,))), -1)
np_concatted = ivy.concatenate((np.ones((1,)), np.ones((1,))), -1)
mx_concatted = ivy.concatenate((mx.nd.ones((1,)), mx.nd.ones((1,))), -1)
torch_concatted = ivy.concatenate((torch.ones((1,)), torch.ones((1,))), -1)

To see a list of all Ivy methods, type ivy. into a python command prompt and press tab. You should then see output like the following:

docs/partial_source/images/ivy_tab.png

Based on this short code sample alone, you may wonder, why is this helpful? Don't most developers stick to just one framework for a project? This is indeed the case, and the benefit of Ivy is not the ability to combine different frameworks in a single project.

So what is the benefit of Ivy?

In a Nutshell

Ivy's strength arises when we want to maximize the usability of our code.

We can write a set of functions once in Ivy, and share these with the community so that all developers can use them, irrespective of their personal choice of framework. TensorFlow? PyTorch? Jax? With Ivy functions it doesn't matter!

This makes it very simple to create highly portable deep learning codebases. The core idea behind Ivy is captured by the example of the ivy.clip function below.

On it's own this may not seem very exciting, there are more interesting things to do in deep learning than clip tensors. Ivy is a building block for more interesting applications.

For example, the Ivy libraries for mechanics, 3D vision, robotics, and differentiable environments are all written in pure Ivy. These libraries provide fully differentiable implementations of various applied functions, primed for integration in end-to-end networks, for users of any deep-learning framework.

Another benefit of Ivy is user flexibility. By keeping the Ivy abstraction lightweight and fully functional, this keeps you in full control of your code. The schematic below emphasizes that you can choose to develop at any abstraction level.

You can code entirely in Ivy, or mainly in their native DL framework, with a small amount of Ivy code. This is entirely up to you, depending on how many Ivy functions you need from existing Ivy libraries, and how much new Ivy code you add into your own project, to maximize it's audience when sharing online.

Where Next?

So, now that you've got the gist of Ivy, and why it's useful. Where to next?

This depends on whether you see yourself in the short term as more likely to be an Ivy library user or an Ivy library contributor.

If you would like to use the existing set of Ivy libraries, dragging and dropping key functions into your own project, then we suggest you dive into some of the demos for the various Ivy libraries currently on offer. Simply open up the main docs, then open the library-specific docs linked on the bottom left, and check out the demos folder in the library repo.

On the other hand, if you have your own new library in mind, or if you would like to implement parts of your own project in Ivy to maximise it's portability, then we recommend checking out the page Writing Ivy in the docs. Here, we dive a bit deeper into the Ivy framework, and the best coding practices to get the most out of Ivy for your own codebases and libraries.

Citation

@article{lenton2021ivy,
  title={Ivy: Templated Deep Learning for Inter-Framework Portability},
  author={Lenton, Daniel and Pardo, Fabio and Falck, Fabian and James, Stephen and Clark, Ronald},
  journal={arXiv preprint arXiv:2102.02886},
  year={2021}
}
Comments
  • Create numpy diagonal

    Create numpy diagonal

    diagonal #6616. Kindly mark a green circle on it. So there will be no conflict in the future. I already experienced that thing. https://github.com/unifyai/ivy/issues/6616.

    TensorFlow Frontend NumPy Frontend Array API Ivy Functional API 
    opened by hrak99 59
  • Add Statistical functions mean numpy frontend #2546

    Add Statistical functions mean numpy frontend #2546

    Greetings i think i did everything i did the frontend the tests as well and changed the init files i did the mean function according to the numpy documentation waiting for your reply. Best regards.

    opened by Emperor-WS 26
  • Isin extension

    Isin extension

    #5716

    added most backend implementations there is only problem with tensorflow I'm still trying to solve since it doesnt have the function isin, once I'm able to do that I will add tests

    Array API Function Reformatting Ivy Functional API Ivy API Experimental 
    opened by pillarxyz 20
  • reformat shape_to_tuple

    reformat shape_to_tuple

    Hi, I've got a question on testings. I was getting errors, so I checked the logs and I found out that some of those tests aren't ready yet (e.g.: shape_to_tuple). Not sure if I'm right, but it'll be awesome if you give some information about this. Thank you.

    opened by mcandemir 19
  • feat: add is_tensor to tensorflow frontend general functions

    feat: add is_tensor to tensorflow frontend general functions

    Close #7584 Need help with PyTest, I am unable to wrap my head around the testing helpers yet.

    Essentially, when I run these tests, I get the same error, despite trying various combinations of the parameters passed to the test_frontend_function

    TensorFlow Frontend 
    opened by chtnnh 18
  • argmax function: general.py

    argmax function: general.py

    Test Cases:

    • 42 passed for pytest ./ivy/ivy_tests/test_functional/test_core/test_general.py::test_argmax --disable-warnings -rs
    • 6 skipped for conftest.py
    • No errors

    Implemented for

    • [x] jax
    • [x] numpy
    • [x] mxnet
    • [x] tensorflow
    • [x] torch
    Array API Single Function 
    opened by 7wikd 18
  • Added PadV2 to raw_ops

    Added PadV2 to raw_ops

    Closes https://github.com/unifyai/ivy/issues/9394 Please that this PR is based on https://github.com/unifyai/ivy/pull/9461 as they have common functionality

    TensorFlow Frontend 
    opened by KareemMAX 0
Releases(v1.1.9)
  • v1.1.5(Jul 26, 2021)

    Version 1.1.5.

    Added some new methods and classes, improved the ivy.Module and ivy.Container classes. ivy.Container now overrides more built-in methods, and has more flexible nested methods such as gather_nd, repeat, stop_gradients etc.

    This version was tested against: JAX 0.2.17 JAXLib 0.1.69 TensorFlow 2.5.0 TensorFlow Addons 0.13.0 TensorFlow Probability 0.13.0 PyTorch 1.9.0 MXNet 1.8.0 NumPy 1.19.5

    However, Ivy 1.1.5 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.4(Apr 12, 2021)

    Version 1.1.4.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.12 TensorFlow 2.4.1 PyTorch 1.8.1 MXNet 1.8.0 NumPy 1.20.2

    However, Ivy 1.1.4 inevitably supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.3(Mar 19, 2021)

    Version 1.1.3.

    Added some new methods, fixed some small bugs, improved unit testing, and tested against the latest backend versions.

    This version was tested against: JAX 0.2.10 TensorFlow 2.4.1 PyTorch 1.8.0 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.3 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.2(Feb 27, 2021)

    Version 1.1.2.

    Added adam update, changed gradient methdos to operate on gradient dicts instead of lists, added new container chain chain method, among other small changes.

    This version was tested against: JAX 0.2.9 TensorFlow 2.4.1 PyTorch 1.7.1 MXNet 1.7.0 NumPy 1.19.5

    However, Ivy 1.1.2 likely supports many previous and future backend versions, due to the stability of the core APIs for each backend framework.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.1(Feb 10, 2021)

Owner
Ivy
The Templated Deep Learning Framework
Ivy
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022