Display, filter and search log messages in your terminal

Overview

Textualog

Display, filter and search logging messages in the terminal.

screenshot

This project is powered by rich and textual.

Some of the ideas and code in this project are based on:

Installation

The easiest way to install the package is by running the pip command in the Python virtual environment of your project:

$ python -m pip install [--upgrade] textualog

Usage

The textualog app should have been installed in your environment, then run the following command:

$ textualog --log <path to the log file>

In the examples directory of this project, you can find an example log file to inspect and play with.

The main view is divided in three panels, (1) a Records panel that displays all the logging records in a colored view, (2) a Record Info panel that displays more details about the selected logging message (a message can be selected by a mouse click), and (3) a Levels panel that displays the standard logging levels. Logging levels can be switched on or off with a key press, d=debug, i=info, w=warning, e=error, c=critical. When you click inside the Record Info panel, the main view will change in a Record Details view that displays all information associated with the selected logging message. This view is mainly used when the logging message has extra multi-line information attached, and depending on the amount of information, this view is scrollable. When the selected logging message contains extra information, the Record Info panel will have an asterisk in the title. Use the Escape key to return to the main view.

The app can be terminated with the 'q' key or by pressing CTRL-C. If you need a little help on the keyboard shortcuts, press the '?' key to present the Info Help panel on the right side of the terminal. Also here use the Escape key to hide the help panel again.

Pressing the 'n' key will slide in a Namespaces panel on the left side of the Terminal. This panel is currently not functional. The idea is to allow the user to filter the logging messages by selecting one or more namespaces.

Log file formats

The current support is for a key-value type of log file. The log line shall have a fixed format, which is what I currently use in my main other projects. The following key=value pairs shall be there in the given order:

  • level=<logging level>
  • ts=<'%Y-%m-%dT%H:%M:%S,%f'>
  • process=<process name>
  • process_id=<PID>
  • caller=<calling function:lineno>
  • msg=<logging message>

In the future other formats can be supported by implementing a plugin class. Planned formats are the JSON format, ...

Roadmap

  • Display message details including extra lines that contain further information like e.g. traceback info.
  • Implement search functionality to search for strings or regular expressions and position the screen at the first match
  • Start work on filtering log messages based on their namespace
Owner
Rik Huygen
Self-educated Pythonista. Seriously trying to write clean and Pythonic code.
Rik Huygen
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022