FID calculation with proper image resizing and quantization steps

Overview

clean-fid: Fixing Inconsistencies in FID


Project | Paper

The FID calculation involves many steps that can produce inconsistencies in the final metric. As shown below, different implementations use different low-level image quantization and resizing functions, the latter of which are often implemented incorrectly.

We provide an easy-to-use library to address the above issues and make the FID scores comparable across different methods, papers, and groups.

FID Steps


On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation
Gaurav Parmar, Richard Zhang, Jun-Yan Zhu
arXiv 2104.11222, 2021
CMU and Adobe



Buggy Resizing Operations

The definitions of resizing functions are mathematical and should never be a function of the library being used. Unfortunately, implementations differ across commonly-used libraries. They are often implemented incorrectly by popular libraries.


The inconsistencies among implementations can have a drastic effect of the evaluations metrics. The table below shows that FFHQ dataset images resized with bicubic implementation from other libraries (OpenCV, PyTorch, TensorFlow, OpenCV) have a large FID score (≥ 6) when compared to the same images resized with the correctly implemented PIL-bicubic filter. Other correctly implemented filters from PIL (Lanczos, bilinear, box) all result in relatively smaller FID score (≤ 0.75).

JPEG Image Compression

Image compression can have a surprisingly large effect on FID. Images are perceptually indistinguishable from each other but have a large FID score. The FID scores under the images are calculated between all FFHQ images saved using the corresponding JPEG format and the PNG format.

Below, we study the effect of JPEG compression for StyleGAN2 models trained on the FFHQ dataset (left) and LSUN outdoor Church dataset (right). Note that LSUN dataset images were collected with JPEG compression (quality 75), whereas FFHQ images were collected as PNG. Interestingly, for LSUN dataset, the best FID score (3.48) is obtained when the generated images are compressed with JPEG quality 87.


Quick Start

  • install requirements

    pip install -r requirements.txt
    
  • install the library

    pip install clean-fid
    
  • Compute FID between two image folders

    from cleanfid import fid
    
    score = fid.compute_fid(fdir1, fdir2)
    
  • Compute FID between one folder of images and pre-computed datasets statistics (e.g., FFHQ)

    from cleanfid import fid
    
    score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=1024)
    
    
  • Compute FID using a generative model and pre-computed dataset statistics:

    from cleanfid import fid
    
    # function that accepts a latent and returns an image in range[0,255]
    gen = lambda z: GAN(latent=z, ... , <other_flags>)
    
    score = fid.compute_fid(gen=gen, dataset_name="FFHQ",
            dataset_res=256, num_gen=50_000)
    
    

Supported Precomputed Datasets

We provide precompute statistics for the following configurations

Task Dataset Resolution split mode
Image Generation FFHQ 256,1024 train+val clean, legacy_pytorch, legacy_tensorflow
Image Generation LSUN Outdoor Churches 256 train clean, legacy_pytorch, legacy_tensorflow
Image to Image horse2zebra 128,256 train, test, train+test clean, legacy_pytorch, legacy_tensorflow

Using precomputed statistics In order to compute the FID score with the precomputed dataset statistics, use the corresponding options. For instance, to compute the clean-fid score on generated 256x256 FFHQ images use the command:

fid_score = fid.compute_fid(fdir1, dataset_name="FFHQ", dataset_res=256,  mode="clean")

Create Custom Dataset Statistics

  • dataset_path: folder where the dataset images are stored
  • Generate and save the inception statistics
    import numpy as np
    from cleanfid import fid
    dataset_path = ...
    feat = fid.get_folder_features(dataset_path, num=50_000)
    mu = np.mean(feats, axis=0)
    sigma = np.cov(feats, rowvar=False)
    np.savez_compressed("stats.npz", mu=mu, sigma=sigma)
    

Backwards Compatibility

We provide two flags to reproduce the legacy FID score.

  • mode="legacy_pytorch"
    This flag is equivalent to using the popular PyTorch FID implementation provided here
    The difference between using clean-fid with this option and code is ~1.9e-06
    See doc for how the methods are compared

  • mode="legacy_tensorflow"
    This flag is equivalent to using the official implementation of FID released by the authors. To use this flag, you need to additionally install tensorflow. The tensorflow cuda version may cause issues with the pytorch code. I have tested this with TensorFlow-cpu 2.2 (`pip install tensorflow-cpu==2.2)


CleanFID Leaderboard for common tasks


FFHQ @ 1024x1024

Model Legacy-FID Clean-FID
StyleGAN2 2.85 ± 0.05 3.08 ± 0.05
StyleGAN 4.44 ± 0.04 4.82 ± 0.04
MSG-GAN 6.09 ± 0.04 6.58 ± 0.06

Image-to-Image (horse->zebra @ 256x256) Computed using test images

Model Legacy-FID Clean-FID
CycleGAN 77.20 75.17
CUT 45.51 43.71

Building from source

python setup.py bdist_wheel
pip install dist/*

Citation

If you find this repository useful for your research, please cite the following work.

@article{parmar2021cleanfid,
  title={On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation},
  author={Parmar, Gaurav and Zhang, Richard and Zhu, Jun-Yan},
  journal={arXiv preprint arXiv:2104.11222},
  year={2021}
}

Credits

PyTorch-StyleGAN2: code | License

PyTorch-FID: code | License

StyleGAN2: code | LICENSE

converted FFHQ weights: code | License

A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
5 Jan 05, 2023