Continual Learning of Electronic Health Records (EHR).

Overview

arXiv License: MIT

Continual Learning of Longitudinal Health Records

Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Release v0.1 of the project corresponds to published results.

Experiments evaluate various continual learning strategies on standard ICU predictive tasks exhibiting covariate shift. Task outcomes are binary, and input data are multi-modal time-series from patient ICU admissions.

Setup

  1. Clone this repo to your local machine.
  2. Request access to MIMIC-III and eICU-CRD.1
  3. Download the preprocessed datasets to the /data subfolder.
  4. (Recommended) Create and activate a new virtual environment:
    python3 -m venv .venv --upgrade-deps
  5. Install dependencies:
    pip install -U wheel buildtools
    pip install -r requirements.txt

Results

To reproduce main results:

python3 main.py --train

Figures will be saved to /results/figs. Instructions to reproduce supplementary experiments can be found here. Bespoke experiments can be specified with appropriate flags e.g:

python3 main.py --domain_shift hospital --outcome mortality_48h --models CNN --strategies EWC Replay --validate --train

A complete list of available options can be found here or with python3 main.py --help.

Citation

If you use any of this code in your work, please reference us:

@misc{armstrong2021continual,
      title={Continual learning of longitudinal health records}, 
      author={J. Armstrong and D. Clifton},
      year={2021},
      eprint={2112.11944},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Python versions

Notes

Note that Temporal Domain Incremental learning experiments require linkage with original MIMIC-III dataset. Requires downloading ADMISSIONS.csv from MIMIC-III to the /data/mimic3/ folder.

Stack

For standardisation of ICU predictive task definitions, feature pre-processing, and Continual Learning method implementations, we use the following tools:

Tool Source
ICU Data MIMIC-III
eICU-CRD
Data preprocessing / task definition FIDDLE
Continual Learning strategies Avalanche
Comments
  • Change experience to class balanced replay

    Change experience to class balanced replay

    Have manually edited the replay definition for now. Will need to update avalanche and do change based on training.storage_policy.

    May also need to change memory buffer to n_tasks * buffer (since GEM etc use this number for experience-wise buffer sizes).

    opened by iacobo 1
  • Bump numpy from 1.20.3 to 1.22.0

    Bump numpy from 1.20.3 to 1.22.0

    Bumps numpy from 1.20.3 to 1.22.0.

    Release notes

    Sourced from numpy's releases.

    v1.22.0

    NumPy 1.22.0 Release Notes

    NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are:

    • Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release.
    • A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX.
    • NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data.
    • New methods for quantile, percentile, and related functions. The new methods provide a complete set of the methods commonly found in the literature.
    • A new configurable allocator for use by downstream projects.

    These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation.

    The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays.

    Expired deprecations

    Deprecated numeric style dtype strings have been removed

    Using the strings "Bytes0", "Datetime64", "Str0", "Uint32", and "Uint64" as a dtype will now raise a TypeError.

    (gh-19539)

    Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

    numpy.loads was deprecated in v1.15, with the recommendation that users use pickle.loads instead. ndfromtxt and mafromtxt were both deprecated in v1.17 - users should use numpy.genfromtxt instead with the appropriate value for the usemask parameter.

    (gh-19615)

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Add Naive with no regularization?

    Add Naive with no regularization?

    Maybe add naive with no regularization? I.e. no dropout etc, to enable clearer ablation testing of naive fine tuning and inherent regularization mechanisms vs explicit CL strategy.

    opened by iacobo 0
  • CNN fails with kernel_size 5 or 7

    CNN fails with kernel_size 5 or 7

    Getting the following error (on GPU) with CNN runs with kernel_size in [5,7]:

    RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)`
    

    https://stackoverflow.com/questions/66600362/runtimeerror-cuda-error-cublas-status-execution-failed-when-calling-cublassge?answertab=votes#tab-top

    opened by iacobo 0
  • Add early stopping to avoid over-large number of epochs for diff models

    Add early stopping to avoid over-large number of epochs for diff models

    MLP / LSTM take shorter time to train than CNN / Transformer. Add early stopping to avoid overtraining, saturating.

    Change strategy to base strategy inheriting from strat and earlystopping plugin.

    opened by iacobo 0
  • Correct code for ROC AUC and AUPRC

    Correct code for ROC AUC and AUPRC

    Cannot average metrics over minibatches as is done for other metrics, since they depend on threshold. Need to calculate over all. Check e.g. MeanScore for inspiration on metric definition.

    opened by iacobo 0
  • Need to add code for further experiments

    Need to add code for further experiments

    plotting.plot_demographics()
    
    # Secondary experiments:
    ########################
    # Sensitivity to sequence length (4hr vs 12hr)
    # Sensitivity to replay size Naive -> replay -> Cumulative
    # Sensitivity to hyperparams of reg methods (Tune hyperparams over increasing number of tasks?)
    # Sensitivity to number of variables (full vs Vitals only e.g.)
    # Sensitivity to size of domains - e.g. white ethnicity much larger than all other groups, affect of order of sequence
    
    opened by iacobo 1
  • Ray Tune warnings

    Ray Tune warnings

    Ray Tune produces the following warnings:

    INFO registry.py:66 -- Detected unknown callable for trainable. Converting to class.
    WARNING experiment.py:295 -- No name detected on trainable. Using DEFAULT.
    

    Non-fatal, but it's annoying to have these messages bloating the console output.

    raytune 
    opened by iacobo 2
Releases(v0.1)
Owner
Jacob
Data Scientist @publichealthengland
Jacob
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022