PyTorch implementation of MulMON

Overview

MulMON

This repository contains a PyTorch implementation of the paper:
Learning Object-Centric Representations of Multi-object Scenes from Multiple Views

Li Nanbo, Cian Eastwood, Robert B. Fisher
NeurIPS 2020 (Spotlight)

Working examples

Check our video presentation for more: https://youtu.be/Og2ic2L77Pw.

Requirements

Hardware:

  • GPU. Currently, at least one GPU device is required to run this code, however, we will consider adding CPU demo code in the future.
  • Disk space: we do NOT have any hard requirement for the disk space, this is totally data-dependent. To use all the datasets we provide, you will need ~9GB disk space. However, it is not necessary to use all of our datasets (or even our datasets), see Data section for more details.

Python Environement:

  1. We use Anaconda to manage our python environment. Check conda installation guide here: https://docs.anaconda.com/anaconda/install/linux/.

  2. Open a new terminal, direct to the MulMON directory:

cd <YOUR-PATH-TO-MulMON>/MulMON/

create a new conda environment called "mulmon" and then activate it:

conda env create -f ./conda-env-spec.yml  
conda activate mulmon
  1. Install a gpu-supported PyTorch (tested with PyTorch 1.1, 1.2 and 1.7). It is very likely that there exists a PyTorch installer that is compatible with both your CUDA and this code. Go find it on PyTorch official site, and install it with one line of command.

  2. Install additional packages:

pip install tensorboard  
pip install scikit-image

If pytorch <=1.2 is used, you will also need to execute: pip install tensorboardX and import it in the ./trainer/base_trainer.py file. This can be done by commenting the 4th line AND uncommenting the 5th line of that file.

Data

  • Data structure (important):
    We use a data structure as follows:

    <YOUR-PATH>                                          
        ├── ...
        └── mulmon_datasets
              ├── clevr                                   # place your own CLEVR-MV under this directory if you go the fun way
              │    ├── ...
              │    ├── clevr_mv            
              │    │    └── ... (omit)                    # see clevr_<xxx> for subdirectory details
              │    ├── clevr_aug           
              │    │    └── ... (omit)                    # see clevr_<xxx> for subdirectory details
              │    └── clevr_<xxx>
              │         ├── ...
              │         ├── data                          # contains a list of scene files
              │         │    ├── CLEVR_new_#.npy          # one .npy --> one scene sample
              │         │    ├── CLEVR_new_#.npy       
              │         │    └── ...
              │         ├── clevr_<xxx>_train.json        # meta information of the training scenes
              │         └── clevr_<xxx>_test.json         # meta information of the testing scenes  
              └── GQN  
                   ├── ...
                   └── gqn-jaco                 
                        ├── gqn_jaco_train.h5
                        └── gqn_jaco_test.h5
    

    We recommend one to get the necessary data folders ready before downloading/generating the data files:

    mkdir <YOUR-PATH>/mulmon_datasets  
    mkdir <YOUR-PATH>/mulmon_datasets/clevr  
    mkdir <YOUR-PATH>/mulmon_datasets/GQN
    
  • Get Datasets

    • Easy way:
      Download our datasets:

      • clevr_mv.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/clevr/ directory (~1.8GB when extracted).
      • clevr_aug.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/clevr/ directory (~3.8GB when extracted).
      • gqn_jaco.tar.gz and place it under the <YOUR-PATH>/mulmon_datasets/GQN/ directory (~3.2GB when extracted).

      and extract them in places. For example, the command for extracting clevr_mv.tar.gz:

      tar -zxvf <YOUR-PATH>/mulmon_datasets/clevr/clevr_mv.tar.gz -C <YOUR-PATH>/mulmon_datasets/clevr/
      

      Note that: 1) we used only a subset of the DeepMind GQN-Jaco dataset, more available at deepmind/gqn-datasets, and 2) the published clevr_aug dataset differs slightly from the CLE-Aug used in the paper---we added more shapes (such as dolphins) into the dataset to make the dataset more interesting (also more complex).

    • Fun way :
      Customise your own multi-view CLEVR data. (available soon...)

Pre-trained models

Download the pretrained models (← click) and place it under `MulMON/', i.e. the root directory of this repository, then extract it by executing: tar -zxvf ./logs.tar.gz. Note that some of them are slightly under-trained, so one could train them further to achieve better results (How to train?).

Usage

Configure data path
To run the code, the data path, i.e. the <YOUR-PATH> in a script, needs to be correctly configured. For example, we store the MulMON dataset folder mulmon_datasets in ../myDatasets/, to train a MulMON on GQN-Jaco dataset using a single GPU, the 4th line of the ./scripts/train_jaco.sh script should look like: data_path=../myDatasets/mulmon_datasets/GQN.

  • Demo (Environment Test)
    Before running the below code, make sure the pretrained models are downloaded and saved first:

    . scripts/demo.sh  
    

    Check ./logs folder for the generated demos.

    • Notes for disentanglement demos: we randomly pick one object for each scene to create the disentanglement demo, so for scene samples where an empty object slot is picked, you won't see any object manipulation effect in the corresponding gifs (especially for the GQN-Jaco scenes). To create a demo like the shown one, one needs to specify (hard-coding) an object slot of interest and traverse informative latent dimensions (as some dimensions are redundant---capture no object property).
  • Train

    • On a single gpu (e.g. using the GQN-Jaco dataset):
    . scripts/train_jaco.sh  
    
    • On multiple GPUs (e.g. using the GQN-Jaco dataset):
    . scripts/train_jaco_parallel.sh  
    
    • To resume training from a stopped session, i.e. saved weights checkpoint-epoch<#number>.pth, simply append a flag --resume_epoch <#number> to one of the flags in the script files.
      For example, to resume previous training (saved as checkpoint-epoch2000.pth) on GQN-Jaco data, we just need to reconfigure the 10th line of the ./scripts/train_jaco.sh as:
      --input_dir ${data_path} --output_dir ${log_path} --resume_epoch 2000 \.
  • Evaluation

    • On a single gpu (e.g. using the Clevr_MV dataset):
    . scripts/eval_clevr.sh  
    
    • Here is a list of imporant evaluation settings which one might wants to play with
      --resume_epoch specify a model to evaluate --test_batch how many batches of test data one uses for evaluation.
      --vis_batch how many batches of output one visualises (save) while evaluation. (note: <= --test_batch)
      --analyse_batch how many batches of latent codes one saves for a post analysis, e.g. disentanglement. (note: <= --test_batch)
      --eval_all (boolean) set True for all [--eval_recon, --eval_seg, --eval_qry_obs, --eval_qry_seg] items, one could also use each of the four independently.
      --eval_dist (boolean) save latent codes for disentanglement analysis. (note: not controlled by --eval_all)
    • For the disentanglement evaluation, run the scripts/eval_clevr.sh script with --eval_dist flag set to True and set the --analyse_batch variable (which controls how many scenes of latent codes one wants to analyse) to be greater than 0. This saves the ouptut latent codes and ground-truth information that allows you to conduct disentanglement quantification using the QEDR framework.
    • You might observe that the evaluation results on the CLE-Aug dataset differ form those on the original paper, this is because the CLE-Aug here is slightly different the one we used for the paper (see more details).

Contact

We constantly respond to the raised ''issues'' in terms of running the code. For further inquiries and discussions (e.g. questions about the paper), email: [email protected].

Cite

Please cite our paper if you find this code useful.

@inproceedings{nanbo2020mulmon,
  title={Learning Object-Centric Representations of Multi-Object Scenes from Multiple Views},
  author={Nanbo, Li and Eastwood, Cian and Fisher, Robert B},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}
Owner
NanboLi
PhD Student, University of Edinburgh
NanboLi
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022