Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Overview

Bridging Multi-Task Learning and Meta-Learning

Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation" by Haoxiang Wang, Han Zhao, and Bo Li from UIUC. [arXiv:2106.09017]

This repo contains our efficient implementation of multi-task learning (MTL) for few-shot learning benchmarks. Our empirical studies show that our efficient MTL implementation can match the state-of-the-art gradient-based meta-learning algorithms, while enjoying an order of magnitude less training time.

If you find this repo useful for your research, please consider citing our paper

@inproceedings{wang2021bridging,
  title={Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation},
  author={Wang, Haoxiang and Zhao, Han and Li, Bo},
  booktitle={International Conference on Machine Learning},
  year={2021},
  organization={PMLR}
}

Installation

This repo was tested with Ubuntu 18.04, Python 3.7 & 3.8 (Anaconda version), Pytorch 1.8 with CUDA 10 & 11.

Required Packages

  • Common Packages (covered by Anaconda): numpy, scikit-learn, tqdm, etc.
  • Pytorch packages: pytorch, torchvision, pytorch-lightning (a PyTorch wrapper), pytorch-optimizer (a collection of optimizers for Pytorch)
  • Other packages: learn2learn (a meta-learning codebase), WandB (a smart logger to visualize and track machine learning experiments)

Installation Tutorial:

  1. Install the Conda package manager with Anaconda following this webpage.

  2. In the Conda environment, install PyTorch and TorchVision following the official tutorial.

  3. In the Conda environment, install all other packages using the command line

    pip install pytorch-lightning==1.0.2 torch_optimizer wandb 
    
    • Currently, learn2learn is not compatible with the latest version of pytorch-lightning.
  4. Install the latest version of learn2learn by downloading its GitHub repo to a local folder

    git clone https://github.com/learnables/learn2learn.git && cd learn2learn && pip install -e .
    

Code

This repo is mainly built upon the learn2learn package (especially its pytorch-lightning version).

  • train.py: The script to train multi-task learning (and other meta-learning algorithms) on few-shot image classification benchmarks. This code is built upon this example provided by learn2learn.
  • lightning_episodic_module.py: This contains a base class LightningEpisodicModule for meta-learning. Notice that this class is built upon this implementation in learn2learn, and we add more choices of test methods, optimizers, and learning rate schedulers to this class.
  • lightning_mtl.py: This contains a class LightningMTL, which is our implementation of multi-task learning (MTL). Notice that this is a child class of LightningEpisodicModule, and it only includes the training code. Please refer to lightning_episodic_module.py for the optimizer setup and the test/validation evaluation code (e.g., fine-tuning the last layer by L2-regularized logistic regression)
  • models/: This folder is adopted from the repo RFS by Yue Wang, and it contains the implementation of multiple variants of ResNet. For a fair comparison with previous few-shot learning works, we conducted all experiments with the ResNet-12 architecture. However, one can try other architectures (e.g., ResNet-50 or WideResNet-28) to obtain possibly better performance.
  • datasets/: This is adapted from this learn2learn folder, which contains data loaders for few-shot image classification datasets. We only made a slight modification to two data loaders (mini-ImageNet and tiered-ImageNet), so we only present them here. Other data-loaders can be directly loaded from the learn2learn package.
  • benchmarks/: This is adapted from this learn2learn folder, which provides wrappers for data loaders (e.g., few-shot task construction, data augmentation). We implemented the data augmentation introduced in MetaOptNet (named as Lee19 in our code), and added some functions to accommodate the training of multi-task learning.

Logging and Checkpointing

  • Logging: We use the WandB logger, which can automatically upload all training and evaluation logs to the cloud. You need to register a free WandB account first and log in to it on your workstation/server following this tutorial. You can also turn off the sync function to make the logger purely offline. Notice that the logger we used is wrapped by Pytorch-Lightning (see this doc), and you can easily switch it to other loggers supported by Pytorch-Lighting (e.g., TensorBoard, MLflow, Comet, Neptune), since the logging functions we use in this repo is universal to all Pytorch-Lightning loggers. See this tutorial for details.
  • Checkpointing: We adopt the checkpointing functions provided by Pytorch-Lightning, which can automatically save checkpoints at the end of every epoch. Our implementation only saves the best epoch checkpoint (i.e., the epoch with the highest validation accuracy) and the last epoch checkpoint, so the disk usage of checkpoints is constant. Pytorch-Lightning can also help you load checkpoints easily.

Args and Flags

Below, we introduce multiple arguments and flags you might want to modify.

Notice that the argparser does not only parse the arguments in train.py. In addition, it also parses arguments in 'lightning_episodic_module.py' and lightning_mtl.py. Furthermore, some arguments are embedded in pytorch-lightning (e.g., --max_epochs).

  • --dataset: Currently, we support four datasets, ['mini-imagenet', 'tiered-imagenet', 'cifarfs', 'fc100']
  • --algorithm: We only provide the implementation of multi-task learning in this repo. However, you can also try other meta-learning algorithms provided by this learn2learn folder.
    • Note: in the empirical comparison of our paper, we take the officially reported performance in the original papers of these meta-learning methods (e.g., MAML, MetaOptNet), instead of running this script with the learn2learn implementation.
  • --root: The root directory that saves datasets. The default is ~/data.
  • --log_dir: The directory that saves logs and checkpoints. The defult is ~/wandb_logs
  • --gpu: The index of the GPU you want to use. Currently, our code only supports single-GPU training.
  • --norm_train_features: Normalize features (i.e., last hidden layer outputs) during training. We find this is useful for all datasets except for FC100.
  • --test_method: The default is l2, which is the L2-regularized logistic regression we use for the fine-tuning adaptation during the test phase.
  • --optim: The optimizer to use (default is 'radam', i.e., RAdam). The choice list is ['sgd', 'sgdp', 'sgdw', 'adam', 'adamw', 'adamax', 'radam', 'adabound', 'adamp']. These optimizers are adopted from PyTorch and pytorch-optimizer.
  • --scheduler: The learning rate scheduler to use (default is 'plateau', i.e., ReduceLROnPlateau). The other choice is 'step', which is the StepLR scheduler.
  • --meta_batch_size: The number of training tasks in a batch during (meta-)training.
  • --train_queries:
  • --test_shots: The number of shots during the test.
    • We only consider 5-way classification in our experiments. If you want to vary it, you can change the flags --train_ways and --test_ways.
    • Our implementation of multi-task learning does not care about the number of shots during training, since it does not split a task into query and support data. Thus --train_shots is noneffective for multi-task learning. But it is useful to other meta-learning algorithms.
  • --test_queries: The number of query samples per class in each test task (default is 30).
    • In our experiments, we adopt test_queries = 50. But this has a large GPU memory consumption, e.g., it will exceed 11GB (the limit of 1080ti and 2080ti) when running on mini-ImageNet. Thus, we set it as 30 here instead. In principle, larger test_queries leads to a more accurate estimation of the test accuracy. However, if you cannot use a large value of test_queries, you can also enlarge the following final_test_epoch_length to obtain a more accurate test accuracy estimation.
  • --final_test_epoch_length: The number of tasks for test evaluation at the end of training. Default is 2000.
  • --no_log: Running the script with this flag will turn off the logging and checkpointing. Notice that in this mode, pytorch-lightning will automatically write some checkpoint files to ./checkpoints/.
  • --max_epochs: the number of maximum training epochs.

Running

To replicate empirical results of multi-task learning shown in the paper, please run the following commands with your preferred root directory to save datasets and the GPU to use. The code can automatically download datasets to the root directory you specified.

In the following demo, we consider the root directory as /data and the GPU index as 0.

mini-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --meta_batch_size 2 --test_shots 5 --algorithm mtl --dataset mini-imagenet
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features  --test_shots 1 --algorithm mtl --dataset mini-imagenet
    

tiered-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 1 --test_shots 5 --algorithm mtl --dataset tiered-imagenet
    
    • For multi-task learning, there is no query-support split during training (i.e., one can think that we "merge" query and support data for multi-task learning). Then, given the default train_queries = 5, setting --train_queries 35 makes the number of samples per class in each training task to be 40.
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset tiered-imagenet
    

CIFAR-FS

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --test_shots 5 --algorithm mtl --dataset cifarfs
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 15 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset cifarfs
    

FC100

  • 5-shot

    python train.py --gpu 0 --root ~/data --test_shots 5 --algorithm mtl --dataset fc100
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --train_queries 4 --train_shots 1 --meta_batch_size 1 --test_shots 1 --algorithm mtl --dataset fc100
    
    • Setting --train_queries 4 --train_shots 1 reduces the number of samples per class in each training task to be 4+1=5 for multi-task learning, since it does not have the query-support splitting.

Results

Here is an empirical comparison of our implementation of multi-task learning against MetaOptNet, a state-of-the-art gradient-based meta-learning algorithm. For more results, please refer to our paper.

Benchmarking

Efficiency comparison

We benchmarked the training cost of Multi-Task Learning and MetaOptNet on AWS-EC2 P3 instances. See our papers for more details.

  • mini-ImageNet (5-way 5-shot)
Test Accuracy GPU Hours
MetaOptNet 78.63% 85.6 hrs
Multi-Task Learning 77.72% 3.7 hrs
  • tiered-ImageNet (5-way 5-shot)

    efficiency-tiered-imagenet
    • We vary the meta_batch_size and the number of epochs and finally obtain this plot. Each dot of MTL represents the result of one configuration. With smaller meta_batch_size and the number of epochs, MTL can be 11x faster than MetaOptNet while achieving the same performance (81.55% vs. 81.56%).

Contact Information

Please contact Haoxiang Wang ([email protected]) for any questions regarding this repo.

If you have questions regarding the learn2learn codebase, please consider joining the learn2learn slack to ask the authors and contributors of learn2learn directly.

Acknowledgments

In this repo, we adopt some code from the following codebases, and we sincerely thank their authors:

  • learn2learn: This repo is built on the learn2learn codebase (more precisely, the pytorch-lightning version of learn2learn), and the implemented multi-task learning code will be pushed to learn2learn in the future. Stay tuned!
  • RFS: We adopt the implementation of neural net architectures (e.g., CNNs, ResNets) from the RFS codebase (i.e., we copied their models/ to the './models' in this repo).
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023