2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Overview

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021 AIAC QQ浏览器AI算法大赛 赛道二 超参数优化 初赛Rank3 决赛Rank6

赛题官网:https://algo.browser.qq.com/

赛题内容:在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真实业务场景问题出发,并基于脱敏后的数据集来评测各个参赛队伍的超参数优化算法。本赛题为超参数优化问题或黑盒优化问题:给定超参数的取值空间,每一轮可以获取一组超参数对应的Reward,要求超参数优化算法在限定的迭代轮次内找到Reward尽可能大的一组超参数,最终按照找到的最大Reward来计算排名。

算法baseline主要来自华为HEBO,针对比赛做了一些参数和代码的修改。另外官方提供的代码修改了一些结构方便线下debug。

运行环境: win10 ,Python3.6,Pycharm20200101,git bash用于运行打包脚本。

官方代码主要修改点:

1、thpo/run_search.py函数,增加修改如下代码:

#run_cmd = common.PYTHONX + " ./thpo/run_search_one_time.py " + common.args_to_str(cur_args)
args = common.parse_args(common.experiment_parser("description"))
searcher_root = args[common.CmdArgs.searcher_root]
searcher = get_implement_searcher(searcher_root)
eva_func_list = args[common.CmdArgs.data]
repeat_num = args[common.CmdArgs.repear_num]
err_code, err_msg = run_search_one_time(args, searcher, eva_func_list[0], repeat_num)

2、初赛阶段,修改n_iteration为10次,总共50组参数,因为hebo线下很容易就到0.99+,将迭代的次数减小,方便继续优化,线下线上能保证同时上分。

hebo代码修改点:

1、修改代码结构,适配本次比赛,具体可以查看searcher.py.

2、searcher.py,name='gpy',MACE方法改为MOMeanSigmaLCB,EvolutionOpt修改iters参数为25.决赛优化check_unique的去重代码。在获得一批最优点后,增加通过距离选择其中一些点的方法,优于hebo原代码中的随机选择方式。具体在distance相关代码。

3、bo/models/gp/gpy_wgp.py,Matern32改为Matern52,去掉linear核,optimize_restarts修改为原来的三分之一,restarts改为一次,也就是优化一次。

总结

上面是本次比赛初赛和决赛的一些修改点,其它的漏掉的记起来了再补充。因为之前没做过超参数的优化,所以除了读大量论文和代码花了很多时间,调参也是花了很多时间。所以try.txt里面记录了大量调参的过程和结果,留作记录。另外初赛阶段把NeurIPS 2020开源的代码都试了下,特别是turbo这个试了很久,感觉应该有效果,但是实际使用效果不佳。初赛阶段之所以做上面这些修改,主要原因是一开始hebo代码调通以后,线下0.99线上0.001,后面发现是超时问题,所以相关的调参工作基本上是优化代码的运行时间,确保精度不下降的情况下提高速度,最终逐步从0.7+优化到0.95+,不过初赛最终切榜的时候显示超时,线上分数掉到0.899+,rank3.

复赛阶段基本上代码没做太大修改,因为试了很多策略效果都不怎么理想。最终还是没用early stop策略。线上0.712+

reference里面有使用的相关开源代码的链接,里面也能找到相应的论文,细节部分可以看下论文里面。

reference:

1、https://github.com/huawei-noah/HEBO/tree/master/HEBO

2、https://bbochallenge.com/leaderboard/

3、https://github.com/uber-research/TuRBO

Owner
Aigege
记录下数据挖掘、计算机视觉工作中编写的一些代码和总结,备份和分享下。 主要包括工作中的一些实现,自己刷比赛时编写的一些解决方案,包括分析和建模,另外还有些阅读最新论文实现的视觉CNN,结构化数据NN网络等,使用的tensorflow、keras框架,陆续加入阅最新sota论文实现的新算法
Aigege
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

DAB-DETR This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR. Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi

336 Dec 25, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022