2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Overview

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021 AIAC QQ浏览器AI算法大赛 赛道二 超参数优化 初赛Rank3 决赛Rank6

赛题官网:https://algo.browser.qq.com/

赛题内容:在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真实业务场景问题出发,并基于脱敏后的数据集来评测各个参赛队伍的超参数优化算法。本赛题为超参数优化问题或黑盒优化问题:给定超参数的取值空间,每一轮可以获取一组超参数对应的Reward,要求超参数优化算法在限定的迭代轮次内找到Reward尽可能大的一组超参数,最终按照找到的最大Reward来计算排名。

算法baseline主要来自华为HEBO,针对比赛做了一些参数和代码的修改。另外官方提供的代码修改了一些结构方便线下debug。

运行环境: win10 ,Python3.6,Pycharm20200101,git bash用于运行打包脚本。

官方代码主要修改点:

1、thpo/run_search.py函数,增加修改如下代码:

#run_cmd = common.PYTHONX + " ./thpo/run_search_one_time.py " + common.args_to_str(cur_args)
args = common.parse_args(common.experiment_parser("description"))
searcher_root = args[common.CmdArgs.searcher_root]
searcher = get_implement_searcher(searcher_root)
eva_func_list = args[common.CmdArgs.data]
repeat_num = args[common.CmdArgs.repear_num]
err_code, err_msg = run_search_one_time(args, searcher, eva_func_list[0], repeat_num)

2、初赛阶段,修改n_iteration为10次,总共50组参数,因为hebo线下很容易就到0.99+,将迭代的次数减小,方便继续优化,线下线上能保证同时上分。

hebo代码修改点:

1、修改代码结构,适配本次比赛,具体可以查看searcher.py.

2、searcher.py,name='gpy',MACE方法改为MOMeanSigmaLCB,EvolutionOpt修改iters参数为25.决赛优化check_unique的去重代码。在获得一批最优点后,增加通过距离选择其中一些点的方法,优于hebo原代码中的随机选择方式。具体在distance相关代码。

3、bo/models/gp/gpy_wgp.py,Matern32改为Matern52,去掉linear核,optimize_restarts修改为原来的三分之一,restarts改为一次,也就是优化一次。

总结

上面是本次比赛初赛和决赛的一些修改点,其它的漏掉的记起来了再补充。因为之前没做过超参数的优化,所以除了读大量论文和代码花了很多时间,调参也是花了很多时间。所以try.txt里面记录了大量调参的过程和结果,留作记录。另外初赛阶段把NeurIPS 2020开源的代码都试了下,特别是turbo这个试了很久,感觉应该有效果,但是实际使用效果不佳。初赛阶段之所以做上面这些修改,主要原因是一开始hebo代码调通以后,线下0.99线上0.001,后面发现是超时问题,所以相关的调参工作基本上是优化代码的运行时间,确保精度不下降的情况下提高速度,最终逐步从0.7+优化到0.95+,不过初赛最终切榜的时候显示超时,线上分数掉到0.899+,rank3.

复赛阶段基本上代码没做太大修改,因为试了很多策略效果都不怎么理想。最终还是没用early stop策略。线上0.712+

reference里面有使用的相关开源代码的链接,里面也能找到相应的论文,细节部分可以看下论文里面。

reference:

1、https://github.com/huawei-noah/HEBO/tree/master/HEBO

2、https://bbochallenge.com/leaderboard/

3、https://github.com/uber-research/TuRBO

Owner
Aigege
记录下数据挖掘、计算机视觉工作中编写的一些代码和总结,备份和分享下。 主要包括工作中的一些实现,自己刷比赛时编写的一些解决方案,包括分析和建模,另外还有些阅读最新论文实现的视觉CNN,结构化数据NN网络等,使用的tensorflow、keras框架,陆续加入阅最新sota论文实现的新算法
Aigege
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022