Collection of generative models in Tensorflow

Overview

tensorflow-generative-model-collections

Tensorflow implementation of various GANs and VAEs.

Related Repositories

Pytorch version

Pytorch version of this repository is availabel at https://github.com/znxlwm/pytorch-generative-model-collections

"Are GANs Created Equal? A Large-Scale Study" Paper

https://github.com/google/compare_gan is the code that was used in the paper.
It provides IS/FID and rich experimental results for all gan-variants.

Generative Adversarial Networks (GANs)

Lists

Name Paper Link Value Function
GAN Arxiv
LSGAN Arxiv
WGAN Arxiv
WGAN_GP Arxiv
DRAGAN Arxiv
CGAN Arxiv
infoGAN Arxiv
ACGAN Arxiv
EBGAN Arxiv
BEGAN Arxiv

Variants of GAN structure

Results for mnist

Network architecture of generator and discriminator is the exaclty sames as in infoGAN paper.
For fair comparison of core ideas in all gan variants, all implementations for network architecture are kept same except EBGAN and BEGAN. Small modification is made for EBGAN/BEGAN, since those adopt auto-encoder strucutre for discriminator. But I tried to keep the capacity of discirminator.

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type 
   
     --epoch 25 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 2 Epoch 10 Epoch 25
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 10 Epoch 25
CGAN
ACGAN
infoGAN

InfoGAN : Manipulating two continous codes

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.
Fashion-mnist is a recently proposed dataset consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type 
   
     --epoch 40 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 20 Epoch 40
GAN
LSGAN
WGAN
WGAN_GP
DRAGAN
EBGAN
BEGAN

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 20 Epoch 40
CGAN
ACGAN
infoGAN

Without hyper-parameter tuning from mnist-version, ACGAN/infoGAN does not work well as compared with CGAN.
ACGAN tends to fall into mode-collapse.
infoGAN tends to ignore noise-vector. It results in that various style within the same class can not be represented.

InfoGAN : Manipulating two continous codes

Some results for celebA

(to be added)

Variational Auto-Encoders (VAEs)

Lists

Name Paper Link Loss Function
VAE Arxiv
CVAE Arxiv
DVAE Arxiv (to be added)
AAE Arxiv (to be added)

Variants of VAE structure

Results for mnist

Network architecture of decoder(generator) and encoder(discriminator) is the exaclty sames as in infoGAN paper. The number of output nodes in encoder is different. (2x z_dim for VAE, 1 for GAN)

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type 
   
     --epoch 25 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 10 Epoch 25
VAE
GAN

Results of GAN is also given to compare images generated from VAE and GAN. The main difference (VAE generates smooth and blurry images, otherwise GAN generates sharp and artifact images) is cleary observed from the results.

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 10 Epoch 25
CVAE
CGAN

Results of CGAN is also given to compare images generated from CVAE and CGAN.

Learned manifold

The following results can be reproduced with command:

python main.py --dataset mnist --gan_type VAE --epoch 25 --batch_size 64 --dim_z 2

Please notice that dimension of noise-vector z is 2.

Name Epoch 1 Epoch 10 Epoch 25
VAE

Results for fashion-mnist

Comments on network architecture in mnist are also applied to here.

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type 
   
     --epoch 40 --batch_size 64

   

Random generation

All results are randomly sampled.

Name Epoch 1 Epoch 20 Epoch 40
VAE
GAN

Results of GAN is also given to compare images generated from VAE and GAN.

Conditional generation

Each row has the same noise vector and each column has the same label condition.

Name Epoch 1 Epoch 20 Epoch 40
CVAE
CGAN

Results of CGAN is also given to compare images generated from CVAE and CGAN.

Learned manifold

The following results can be reproduced with command:

python main.py --dataset fashion-mnist --gan_type VAE --epoch 25 --batch_size 64 --dim_z 2

Please notice that dimension of noise-vector z is 2.

Name Epoch 1 Epoch 10 Epoch 25
VAE

Results for celebA

(to be added)

Folder structure

The following shows basic folder structure.

├── main.py # gateway
├── data
│   ├── mnist # mnist data (not included in this repo)
│   |   ├── t10k-images-idx3-ubyte.gz
│   |   ├── t10k-labels-idx1-ubyte.gz
│   |   ├── train-images-idx3-ubyte.gz
│   |   └── train-labels-idx1-ubyte.gz
│   └── fashion-mnist # fashion-mnist data (not included in this repo)
│       ├── t10k-images-idx3-ubyte.gz
│       ├── t10k-labels-idx1-ubyte.gz
│       ├── train-images-idx3-ubyte.gz
│       └── train-labels-idx1-ubyte.gz
├── GAN.py # vanilla GAN
├── ops.py # some operations on layer
├── utils.py # utils
├── logs # log files for tensorboard to be saved here
└── checkpoint # model files to be saved here

Acknowledgements

This implementation has been based on this repository and tested with Tensorflow over ver1.0 on Windows 10 and Ubuntu 14.04.

[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022