ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Overview

ManimML

GitHub license GitHub tag Pypi Downloads Follow Twitter

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine learning concepts. Additionally, we want to provide a set of abstractions which allow users to focus on explanations instead of software engineering.

Table of Contents

  1. Getting Started
  2. Examples

Getting Started

First you will want to install manim.

Then install the package form source or pip install manim_ml

Then you can run the following to generate the example videos from python scripts.

manim -pqh src/vae.py VAEScene

Examples

Checkout the examples directory for some example videos with source code.

Neural Networks

This is a visualization of a Variational Autoencoder made using ManimML. It has a Pytorch style list of layers that can be composed in arbitrary order. The following video is made with the code from below.

class VariationalAutoencoderScene(Scene):

    def construct(self):
        embedding_layer = EmbeddingLayer(dist_theme="ellipse").scale(2)
        
        image = Image.open('images/image.jpeg')
        numpy_image = np.asarray(image)
        # Make nn
        neural_network = NeuralNetwork([
            ImageLayer(numpy_image, height=1.4),
            FeedForwardLayer(5),
            FeedForwardLayer(3),
            embedding_layer,
            FeedForwardLayer(3),
            FeedForwardLayer(5),
            ImageLayer(numpy_image, height=1.4),
        ], layer_spacing=0.1)

        neural_network.scale(1.3)

        self.play(Create(neural_network))
        self.play(neural_network.make_forward_pass_animation(run_time=15))

Generative Adversarial Network

This is a visualization of a Generative Adversarial Network made using ManimML.

VAE Disentanglement

This is a visualization of disentanglement with a Variational Autoencoder

You might also like...
Create animations for the optimization trajectory of neural nets
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Testing the Facial Emotion Recognition (FER) algorithm on animations
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Comments
  • PyPi out of date

    PyPi out of date

    When I pip install manim_ml it doesn't include any of the examples in the README. It also doesn't have many of the modules you'd expect. For example, manim_ml.neural_networks doesn't exist. As a workaround I've manually installed dependencies and added a clone of the latest commit to my python path. However, it would be nice to be able to install it via pip.

    opened by ElPiloto 6
  • [BUG] update some of the examples

    [BUG] update some of the examples

    I updated most of the examples, in particular: disentanglement cnn vae.

    interpolation still doesn't work, and gan has some positioning issues but at least it renders.

    Thanks for the cool library btw! l think having working/updated examples would increase it's visibility and usefulness :)

    opened by YannDubs 1
  • NN scaling issue with Convolutional3DLayer

    NN scaling issue with Convolutional3DLayer

    At some point there was code commited changing the behaviour of the net when scaling it. If I use the code in the pip package everything works fine (0.0.11 seems to contain only code prior to the 7th of may). https://user-images.githubusercontent.com/54776552/198372984-f704cceb-8582-4bf9-bc23-c15ebb836b34.mp4

    However I'm forking the repo (with the latest commit from august) because I need to change some internal code and noticed this problem.

    https://user-images.githubusercontent.com/54776552/198373792-fd672ec7-708e-4ebe-b353-e291c8a591dd.mp4

    Maybe someone can pinpoint the exact commit which causes this behaviour?

    Code used:

    class Test(Scene):
    	def construct(self):
    		# Make the Layer object
    		l1 = Convolutional3DLayer(4, 2, 2)
    		l2 = Convolutional3DLayer(5, 1, 1)
    		l3 = Convolutional3DLayer(2, 3, 3)
    		layers = [l1, l2, l3]
    		nn = NeuralNetwork(layers)
    		nn.scale(2)
    		nn.move_to(ORIGIN)
    		# Make Animation
    		self.add(nn)
    		#self.play(Create(nn))
    		forward_propagation_animation = nn.make_forward_pass_animation(run_time=5, passing_flash=True)
    
    		self.play(forward_propagation_animation)
    
    opened by wand555 1
Releases(v0.0.1)
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022