PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Overview

Generalization in Dexterous Manipulation via
Geometry-Aware Multi-Task Learning

[Project Page] [Paper]

Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1, Deepak Pathak3

1University of California, Berkeley, 2Google Brain, 3Carnegie Mellon University

This is a PyTorch implementation of our Geometry-Aware Multi-Task Policy. The codebase also includes a suite of dexterous manipulation environments with 114 diverse real-world objects built upon Gym and MuJoCo.

We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects and generalize to new objects with unseen shape or size. Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms the single-object specialist policies on both training as well as held-out test objects.

If you find this work useful in your research, please cite using the following BibTeX:

@article{huang2021geometry,
  title={Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning},
  author={Huang, Wenlong and Mordatch, Igor and Abbeel, Pieter and Pathak, Deepak},
  journal={arXiv preprint arXiv:2111.03062},
  year={2021}
}

Setup

Requirements

Setup Instructions

git clone https://github.com/huangwl18/geometry-dex.git
cd geometry-dex/
conda create --name geometry-dex-env python=3.6.9
conda activate geometry-dex-env
pip install --upgrade pip
pip install -r requirements.txt
bash install-baselines.sh

Running Code

Below are some flags and parameters for run_ddpg.py that you may find useful for reference:

Flags and Parameters Description
--expID <INT> Experiment ID
--train_names <List of STRING> list of environments for training; separated by space
--test_names <List of STRING> list of environments for zero-shot testing; separated by space
--point_cloud Use geometry-aware policy
--pointnet_load_path <INT> Experiment ID from which to load the pre-trained Pointnet; required for --point_cloud
--video_count <INT> Number of videos to generate for each env per cycle; only up to 1 is currently supported; 0 to disable
--n_test_rollouts <INT> Total number of collected rollouts across all train + test envs for each evaluation run; should be multiple of len(train_names) + len(test_names)
--num_rollouts <INT> Total number of collected rollouts across all train envs for 1 training cycle; should be multiple of len(train_names)
--num_parallel_envs <INT> Number of parallel envs to create for vec_env; should be multiple of len(train_names)
--chunk_size <INT> Number of parallel envs asigned to each worker in SubprocChunkVecEnv; 0 to disable and use SubprocVecEnv
--num_layers <INT> Number of layers in MLP for all policies
--width <INT> Width of each layer in MLP for all policies
--seed <INT> seed for Gym, PyTorch and NumPy
--eval Perform only evaluation using latest checkpoint
--load_path <INT> Experiment ID from which to load the checkpoint for DDPG; required for --eval

The code also uses WandB. You may wish to run wandb login in terminal to record to your account or choose to run anonymously.

WARNING: Due to the large number of total environments, generating videos during training can be slow and memory intensive. You may wish to train the policy without generating videos by passing video_count=0. After training completes, simply run run_ddpg.py with flags --eval and --video_count=1 to visualize the policy. See example below.

Training

To train Vanilla Multi-Task DDPG policy:

python run_ddpg.py --expID 1 --video_count 0 --n_cycles 40000 --chunk 10

To train Geometry-Aware Multi-Task DDPG policy, first pretrain PointNet encoder:

python train_pointnet.py --expID 2

Then train the policy:

python run_ddpg.py --expID 3 --video_count 0 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer

Note we don't save replay buffer here because it is slow as it contains sampled point clouds. If you wish to resume training in the future, do not pass --no_save_buffer above.

Evaluation / Visualization

To evaluate a trained policy and generate video visualizations, run the same command used to train the policy but with additional flags --eval --video_count=<VIDEO_COUNT> --load_path=<LOAD_EXPID>. Replace <VIDEO_COUNT> with 1 if you wish to enable visualization and 0 otherwise. Replace <LOAD_EXPID> with the Experiment ID of the trained policy. For a Geometry-Aware Multi-Task DDPG policy trained using above command, run the following for evaluation and visualization:

python run_ddpg.py --expID 4 --video_count 1 --n_cycles 40000 --chunk 10 --point_cloud --pointnet_load_path 2 --no_save_buffer --eval --load_path 3

Trained Models

We will be releasing trained model files for our Geometry-Aware Policy and single-task oracle policies for each individual object. Stay tuned! Early access can be requested via email.

Provided Environments

Training Envs

e_toy_airplane

knife

flat_screwdriver

elephant

apple

scissors

i_cups

cup

foam_brick

pudding_box

wristwatch

padlock

power_drill

binoculars

b_lego_duplo

ps_controller

mouse

hammer

f_lego_duplo

piggy_bank

can

extra_large_clamp

peach

a_lego_duplo

racquetball

tuna_fish_can

a_cups

pan

strawberry

d_toy_airplane

wood_block

small_marker

sugar_box

ball

torus

i_toy_airplane

chain

j_cups

c_toy_airplane

airplane

nine_hole_peg_test

water_bottle

c_cups

medium_clamp

large_marker

h_cups

b_colored_wood_blocks

j_lego_duplo

f_toy_airplane

toothbrush

tennis_ball

mug

sponge

k_lego_duplo

phillips_screwdriver

f_cups

c_lego_duplo

d_marbles

d_cups

camera

d_lego_duplo

golf_ball

k_toy_airplane

b_cups

softball

wine_glass

chips_can

cube

master_chef_can

alarm_clock

gelatin_box

h_lego_duplo

baseball

light_bulb

banana

rubber_duck

headphones

i_lego_duplo

b_toy_airplane

pitcher_base

j_toy_airplane

g_lego_duplo

cracker_box

orange

e_cups
Test Envs

rubiks_cube

dice

bleach_cleanser

pear

e_lego_duplo

pyramid

stapler

flashlight

large_clamp

a_toy_airplane

tomato_soup_can

fork

cell_phone

m_lego_duplo

toothpaste

flute

stanford_bunny

a_marbles

potted_meat_can

timer

lemon

utah_teapot

train

g_cups

l_lego_duplo

bowl

door_knob

mustard_bottle

plum

Acknowledgement

The code is adapted from this open-sourced implementation of DDPG + HER. The object meshes are from the YCB Dataset and the ContactDB Dataset. We use SubprocChunkVecEnv from this pull request of OpenAI Baselines to speedup vectorized environments.

Owner
Wenlong Huang
Undergraduate Student @ UC Berkeley
Wenlong Huang
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
Code for "On Memorization in Probabilistic Deep Generative Models"

On Memorization in Probabilistic Deep Generative Models This repository contains the code necessary to reproduce the experiments in On Memorization in

The Alan Turing Institute 3 Jun 09, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022