Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

Overview

AgentFormer

This repo contains the official implementation of our paper:

AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
Ye Yuan, Xinshuo Weng, Yanglan Ou, Kris Kitani
ICCV 2021
[website] [paper]

Overview

Loading AgentFormer Overview

Important Note

We have recently noticed a normalization bug in the code and after fixing it, the performance of our method is worse than the original numbers reported in the ICCV paper. For comparision, please use the correct numbers in the updated arXiv version.

Installation

Environment

  • Tested OS: MacOS, Linux
  • Python >= 3.7
  • PyTorch == 1.8.0

Dependencies:

  1. Install PyTorch 1.8.0 with the correct CUDA version.
  2. Install the dependencies:
    pip install -r requirements.txt
    

Datasets

  • For the ETH/UCY dataset, we already included a converted version compatible with our dataloader under datasets/eth_ucy.
  • For the nuScenes dataset, the following steps are required:
    1. Download the orignal nuScenes dataset. Checkout the instructions here.
    2. Follow the instructions of nuScenes prediction challenge. Download and install the map expansion.
    3. Run our script to obtain a processed version of the nuScenes dataset under datasets/nuscenes_pred:
      python data/process_nuscenes.py --data_root <PATH_TO_NUSCENES>
      

Pretrained Models

  • You can download pretrained models from Google Drive or BaiduYun (password: 9rvb) to reproduce the numbers in the paper.
  • Once the agentformer_models.zip file is downloaded, place it under the root folder of this repo and unzip it:
    unzip agentformer_models.zip
    
    This will place the models under the results folder. Note that the pretrained models directly correspond to the config files in cfg.

Evaluation

ETH/UCY

Run the following command to test pretrained models for the ETH dataset:

python test.py --cfg eth_agentformer --gpu 0

You can replace eth with {hotel, univ, zara1, zara2} to test other datasets in ETH/UCY. You should be able to get the numbers reported in the paper as shown in this table:

Ours ADE FDE
ETH 0.45 0.75
Hotel 0.14 0.22
Univ 0.25 0.45
Zara1 0.18 0.30
Zara2 0.14 0.24
Avg 0.23 0.39

nuScenes

Run the following command to test pretrained models for the nuScenes dataset:

python test.py --cfg nuscenes_5sample_agentformer --gpu 0

You can replace 5sample with 10sample to compute all the metrics (ADE_5, FDE_5, ADE_10, FDE_10). You should be able to get the numbers reported in the paper as shown in this table:

ADE_5 FDE_5 ADE_10 FDE_10
Ours 1.856 3.889 1.452 2.856

Training

You can train your own models with your customized configs. Here we take the ETH dataset as an example, but you can train models for other datasets with their corresponding configs. AgentFormer requires two-stage training:

  1. Train the AgentFormer VAE model (everything but the trajectory sampler):
    python train.py --cfg user_eth_agentformer_pre --gpu 0
    
  2. Once the VAE model is trained, train the AgentFormer DLow model (trajectory sampler):
    python train.py --cfg user_eth_agentformer --gpu 0
    
    Note that you need to change the pred_cfg field in user_eth_agentformer to the config you used in step 1 (user_eth_agentformer_pre) and change the pred_epoch to the VAE model epoch you want to use.

Citation

If you find our work useful in your research, please cite our paper AgentFormer:

@inproceedings{yuan2021agent,
  title={AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting},
  author={Yuan, Ye and Weng, Xinshuo and Ou, Yanglan and Kitani, Kris},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

License

Please see the license for further details.

Owner
Ye Yuan
PhD student at Robotics Institute, CMU
Ye Yuan
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022