Boosted CVaR Classification (NeurIPS 2021)

Overview

Boosted CVaR Classification

Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar
NeurIPS 2021

Table of Contents

Quick Start

Before running the code, please install all the required packages in requirements.txt by running:

pip install -r requirements.txt

In the code, we solve linear programs with the MOSEK solver, which requires a license. You can acquire a free academic license from https://www.mosek.com/products/academic-licenses/. Please make sure that the license file is placed in the correct folder so that the solver could work.

Train

To train a set of base models with boosting, run the following shell command:

python train.py --dataset [DATASET] --data_root /path/to/dataset 
                --alg [ALGORITHM] --epochs [EPOCHS] --iters_per_epoch [ITERS]
                --scheduler [SCHEDULER] --warmup [WARMUP_EPOCHS] --seed [SEED]

Use the --download option to download the dataset if you are running for the first time. Use the --save_file option to save your training results into a .mat file. Set the training hyperparameters with --alpha, --beta and --eta.

For example, to train a set of base models on Cifar-10 with AdaLPBoost, use the following shell command:

python train.py --dataset cifar10 --data_root data --alg adalpboost 
                --eta 1.0 --epochs 100 --iters_per_epoch 5000
                --scheduler 2000,4000 --warmup 20 --seed 2021
                --save_file cifar10.mat

Evaluation

To evaluate the models trained with the above command, run:

python test.py --file cifar10.mat

Introduction

In this work, we study the CVaR classification problem, which requires a classifier to have low α-CVaR loss, i.e. low average loss over the worst α fraction of the samples in the dataset. While previous work showed that no deterministic model learning algorithm can achieve a lower α-CVaR loss than ERM, we address this issue by learning randomized models. Specifically we propose the Boosted CVaR Classification framework that learns ensemble models via Boosting. Our motivation comes from the direct relationship between the CVaR loss and the LPBoost objective. We implement two algorithms based on the framework: one uses LPBoost, and the other named AdaLPBoost uses AdaBoost to pick the sample weights and LPBoost to pick the model weights.

Algorithms

We implement three algorithms in algs.py:

Name Description
uniform All sample weight vectors are uniform distributions.
lpboost Regularized LPBoost (set --beta for regularization).
adalpboost α-AdaLPBoost.

train.py only trains the base models. After the base models are trained, use test.py to select the model weights by solving the dual LPBoost problem.

Parameters

All default training parameters can be found in config.py. For Regularized LPBoost we use β = 100 for all α. For AdaLPBoost we use η = 1.0.

Citation and Contact

To cite this work, please use the following BibTex entry:

@inproceedings{zhai2021boosted,
  author = {Zhai, Runtian and Dan, Chen and Suggala, Arun Sai and Kolter, Zico and Ravikumar, Pradeep},
  booktitle = {Advances in Neural Information Processing Systems},
  title = {Boosted CVaR Classification},
  volume = {34},
  year = {2021}
}

To contact us, please email to the following address: Runtian Zhai <[email protected]>

Owner
Runtian Zhai
2nd year PhD at CMU CSD.
Runtian Zhai
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022