PyTea: PyTorch Tensor shape error analyzer

Overview

PyTea: PyTorch Tensor Shape Error Analyzer

paper project page

Requirements

  • node.js >= 12.x
  • python >= 3.8
    • z3-solver >= 4.8

How to install and use

# install node.js
sudo apt-get install nodejs

# install python z3-solver
pip install z3-solver

# download pytea
wget https://github.com/ropas/pytea/releases/download/v0.1.0/pytea.zip
unzip pytea.zip

# run pytea
python bin/pytea.py path/to/source.py

# run example file
python bin/pytea.py packages/pytea/pytest/basics/scratch.py

How to build

# install dependencies
npm run install:all
pip install z3-solver

# build
npm run build

Documentations

Brief explanation of the analysis result

PyTea is composed of two analyzers.

  • Online analysis: node.js (TypeScript / JavaScript)
    • Find numeric range-based shape mismatch and misuse of API argument. If PyTea has found any error while analyzing the code, it will stop at that position and inform the errors and violated constraints to the user.
  • Offline analysis: Z3 / Python
    • The generated constraints are passed to Z3Py. Z3 will solve the constraint sets of each path and print the first violated constraint (if it exists).

The result of the Online analyzer is divided into three classes:

  • potential success path: the analyzer does not found shape mismatch until now, but the final constraint set can be violated if Z3 analyzes it on closer inspection.
  • potential unreachable path: the analyzer found a shape mismatch or API misuses, but there remain path constraints. In short, path constraint is an unresolved branch condition; that means the stopped path might be unreachable if remaining path constraints have a contradiction. Those cases will be distinguished from Offline analysis.
  • immediate failed path: the analyzer has found an error, stops its analysis immediately.

CAVEAT: If the code contains PyTorch or other third-party APIs that we have not implemented, it will raise false alarms. Nevertheless, we also record each unimplemented API call. See LOGS section from the result and search which unimplemented API call is performed.

The final result of the Offline analysis is divided into several cases.

  • Valid path: SMT solver has not found any error. Every constraint will always be fulfilled.
  • Invalid path: SMT solver found a condition that can violate some constraints. Notice that this does not mean the code will always crash, but it found an extreme case that crashes some executions.
  • Undecidable path: SMT solver has met unsolvable constraints, then timeouts. Some non-linear formulae can be classified into this case.
  • Unreachable path: Hard and Path constraints contain contradicting constraints; this path will not be realized from the beginning.

Result examples

  • Error found by Online analysis

test1

  • Error found by Offline analysis

test2

License

MIT License

This project is based on Pyright, also MIT License

Comments
  • LSTM/GRU input_size tensor shape errors

    LSTM/GRU input_size tensor shape errors

    Hi, I have met a problem while detecting LSTM tensor shape errors. The testing file below is runnable and pytea returns correctly.

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    class Model(nn.Module):
    
        def __init__(self):
            super().__init__()
            self.cnn = nn.Conv2d(3, 1, 3, 1, 1)
            self.rnn = nn.LSTM(32, 64, 1, batch_first=True)
            self.pool = nn.MaxPool2d(2, 2)
            self.fc = nn.Linear(64, 16)
    
        def forward(self, x):
            x = self.pool(F.relu(self.cnn(x)))
            x = x.view(-1, 32, 32)
            x, _ = self.rnn(x)
            x = x[:, -1, :].squeeze(1)
            x = F.relu(self.fc(x))
            x = F.softmax(x, dim=-1)
            return x
    
    
    if __name__ == "__main__":
        net = Model()
        x = torch.randn(2, 3, 64, 64)
        y = net(x)
        target = torch.argmax(torch.randn(2, 16), dim=-1)
        loss = F.cross_entropy(y, target.long())
        loss.backward()
        print(y.size())
    

    However, If I change self.rnn = nn.LSTM(32, 64, 1, batch_first=True) into self.rnn = nn.LSTM(64, 64, 1, batch_first=True), torch will report a RuntimeError: Expected 64, got 32. pytea didn't return any CONSTRAINTS information, as it supposed to.

    Then I tried to more LSTM input_size shape errors, all failed. Same situation with GRU. I think it is a bug, because I can detect Conv2d, Linear error successfully.

    opened by MCplayerFromPRC 4
  • Inconsistent with document description

    Inconsistent with document description

    Hello, I have encountered the following problems:

    First question: The content of my source file is:

       import torch
       import torch.nn as nn
    
      class Net(nn.Module):
          def __init__(self):
              super(Net, self).__init__()
              self.layers = nn.Sequential(
                  nn.Linear(28 * 28, 120),
                  nn.ReLU(),
                  nn.Linear(80, 10))
      
          def a(self):
              pass
    
        if __name__ == "__main__":
            n = Net()
    

    But when I execute the command, I get the following results:

    image

    There should be a problem with defining shape in this model.

    Second question: I used it https://github.com/pytorch/examples/blob/master/mnist/main.py , but the command is stuck and no result is returned. As follows:

    image
    opened by dejavu6 2
  • Ternary expression (A if B else C) bug report

    Ternary expression (A if B else C) bug report

    아래와 같은 코드 실행에서 문제가 발생한다는 것을 깨달았습니다.

    x = 0 if 0 <= 1 else 1
    
    # runtime output
    REDUCED HEAP: (size: 250)
      x => 1
    

    파이썬의 삼항연산자가 x = (((0 <= 1) and 0) or 1)로 파싱됩니다. Logical statement가 True, true-value가 0일 때 발생하는 오류인 것으로 보입니다.

    당장 벤치마크 코드에서 나타나는 문제는 아닙니다. Pylib builtin 구현에서 발생한 문제이므로, 다른 방식으로 구현함으로써 일단은 피해갈 수 있을 것 같습니다.

    감사합니다.

    opened by lego0901 1
  • Develop sehoon

    Develop sehoon

    UT-1~6 코드 분석에 필요한 torch API 구현 완료.

    UT-2: epoch을 1로 수정하지 않으면 timeout이됨. UT-3: Python 빌트인 함수 iter, next의 구현은 우선 넘어갔음. UT-6: buggy 코드에서 target이 free variable인데, 이를 처리해 주지 않고 분석을 실행하면 아무것도 출력하지 않는 버그가 있음.

    위 특이사항을 적절히 처리해주고 분석을 실행하면 1~6 모두 buggy 코드는 invalid, fix 코드는 valid 결과를 냄.

    opened by Sehun0819 0
  • path constraint check

    path constraint check

    분석중 한 패스에서 (텐서 모양 오류 등의) 에러를 만나면 해당 패스는 처리됨. 문제는 분기 조건문에 의해 실제로는 진행되지 않는 패스여도 로 처리가 되는 것.

    따라서 분석중 에러를 만났을 때 그 패스가 path constraint를 갖고 있으면 로 처리하여 z3단에 넘기게 수정하였음.

    TODO: z3단에 넘기기 전에 path constraint를 계산하여 Valid면 , Unsat이면 로 처리하기(else )

    opened by Sehun0819 0
  • Bump node-notifier from 8.0.0 to 8.0.1 in /packages/pyright-internal

    Bump node-notifier from 8.0.0 to 8.0.1 in /packages/pyright-internal

    Bumps node-notifier from 8.0.0 to 8.0.1.

    Changelog

    Sourced from node-notifier's changelog.

    v8.0.1

    • fixes possible injection issue for notify-send
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.1.0)
Owner
ROPAS Lab.
ROPAS Lab. @ Seoul National University
ROPAS Lab.
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022