Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

Related tags

Deep LearningSPICE
Overview

SPICE: Semantic Pseudo-labeling for Image Clustering

By Chuang Niu and Ge Wang

This is a Pytorch implementation of the paper. (In updating)

PWC PWC PWC PWC PWC

Installation

Please refer to requirement.txt for all required packages. Assuming Anaconda with python 3.7, a step-by-step example for installing this project is as follows:

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
conda install -c conda-forge addict tensorboard python-lmdb
conda install matplotlib scipy scikit-learn pillow

Then, clone this repo

git clone https://github.com/niuchuangnn/SPICE.git
cd SPICE

Data

Prepare datasets of interest as described in dataset.md.

Training

Read the training tutorial for details.

Evaluation

Evaluation of SPICE-Self:

python tools/eval_self.py --config-file configs/stl10/eval.py --weight PATH/TO/MODEL --all 1

Evaluation of SPICE-Semi:

python tools/eval_semi.py --load_path PATH/TO/MODEL --net WideResNet --widen_factor 2 --data_dir PATH/TO/DATA --dataset cifar10 --all 1 

Read the evaluation tutorial for more descriptions about the evaluation and the visualization of learned clusters.

Model Zoo

All trained models in our paper are available as follows.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self 91.0 82.0 81.5 Model
SPICE 93.8 87.2 87.0 Model
SPICE-Self* 89.9 80.9 79.7 Model
SPICE* 92.9 86.0 85.3 Model
CIFAR10 SPICE-Self 83.8 73.4 70.5 Model
SPICE 92.6 86.5 85.2 Model
SPICE-Self* 84.9 74.5 71.8 Model
SPICE* 91.7 85.8 83.6 Model
CIFAR100 SPICE-Self 46.8 44.8 29.4 Model
SPICE 53.8 56.7 38.7 Model
SPICE-Self* 48.0 45.0 30.8 Model
SPICE* 58.4 58.3 42.2 Model
ImageNet-10 SPICE-Self 96.9 92.7 93.3 Model
SPICE 96.7 91.7 92.9 Model
ImageNet-Dog SPICE-Self 54.6 49.8 36.2 Model
SPICE 55.4 50.4 34.3 Model
TinyImageNet SPICE-Self 30.5 44.9 16.3 Model
SPICE-Self* 29.2 52.5 14.5 Model

More models based on ResNet18 for both SPICE-Self* and SPICE-Semi*.

Dataset Version ACC NMI ARI Model link
STL10 SPICE-Self* 86.2 75.6 73.2 Model
SPICE* 92.0 85.2 83.6 Model
CIFAR10 SPICE-Self* 84.5 73.9 70.9 Model
SPICE* 91.8 85.0 83.6 Model
CIFAR100 SPICE-Self* 46.8 45.7 32.1 Model
SPICE* 53.5 56.5 40.4 Model

Acknowledgement for reference repos

Citation

@misc{niu2021spice,
      title={SPICE: Semantic Pseudo-labeling for Image Clustering}, 
      author={Chuang Niu and Ge Wang},
      year={2021},
      eprint={2103.09382},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Chuang Niu
Chuang Niu
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Curated list of awesome GAN applications and demo

gans-awesome-applications Curated list of awesome GAN applications and demonstrations. Note: General GAN papers targeting simple image generation such

Minchul Shin 4.5k Jan 07, 2023
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022