Sequence lineage information extracted from RKI sequence data repo

Overview

Pango lineage information for German SARS-CoV-2 sequences

This repository contains a join of the metadata and pango lineage tables of all German SARS-CoV-2 sequences published by the Robert-Koch-Institut on Github.

The data here is updated every hour, automatically through a Github action, so whenever new data appears in the RKI repo, you will see it here within at most an hour.

The resulting dataset can be downloaded here, beware it's currently around 50MB in size: https://raw.githubusercontent.com/corneliusroemer/desh-data/main/data/meta_lineages.csv

Omicron share plot

Omicron Logit Plot

Omicron Logit Plot

Description of data

Column description:

  • IMS_ID: Unique identifier of the sequence
  • DATE_DRAW: Date the sample was taken from the patient
  • SEQ_REASON: Reason for sequencing, one of:
    • X: Unknown
    • N: Random sampling
    • Y: Targeted sequencing (exact reason unknown)
    • A[<reason>]: Targeted sequencing because variant PCR indicated VOC
  • PROCESSING_DATE: Date the sample was processed by the RKI and added to Github repo
  • SENDING_LAB_PC: Postcode (PLZ) of lab that did the initial PCR
  • SEQUENCING_LAB_PC: Postcode (PLZ) of lab that did the sequencing
  • lineage: Pango lineage as reported by pangolin
  • scorpio_call: Alternative, rough, variant as determined by scorpio (part of pangolin), this is less precise but a bit more robust than pangolin.

Excerpt

Here are the first 10 lines of the dataset.

IMS_ID,DATE_DRAW,SEQ_REASON,PROCESSING_DATE,SENDING_LAB_PC,SEQUENCING_LAB_PC,lineage,scorpio_call
IMS-10294-CVDP-00001,2021-01-14,X,2021-01-25,40225,40225,B.1.1.297,
IMS-10025-CVDP-00001,2021-01-17,N,2021-01-26,10409,10409,B.1.389,
IMS-10025-CVDP-00002,2021-01-17,N,2021-01-26,10409,10409,B.1.258,
IMS-10025-CVDP-00003,2021-01-17,N,2021-01-26,10409,10409,B.1.177.86,
IMS-10025-CVDP-00004,2021-01-17,N,2021-01-26,10409,10409,B.1.389,
IMS-10025-CVDP-00005,2021-01-18,N,2021-01-26,10409,10409,B.1.160,
IMS-10025-CVDP-00006,2021-01-17,N,2021-01-26,10409,10409,B.1.1.297,
IMS-10025-CVDP-00007,2021-01-18,N,2021-01-26,10409,10409,B.1.177.81,
IMS-10025-CVDP-00008,2021-01-18,N,2021-01-26,10409,10409,B.1.177,
IMS-10025-CVDP-00009,2021-01-18,N,2021-01-26,10409,10409,B.1.1.7,Alpha (B.1.1.7-like)
IMS-10025-CVDP-00010,2021-01-17,N,2021-01-26,10409,10409,B.1.1.7,Alpha (B.1.1.7-like)
IMS-10025-CVDP-00011,2021-01-17,N,2021-01-26,10409,10409,B.1.389,

Suggested import into pandas

You can import the data into pandas as follows:

#%%
import pandas as pd

#%%
df = pd.read_csv(
    'https://raw.githubusercontent.com/corneliusroemer/desh-data/main/data/meta_lineages.csv',
    index_col=0,
    parse_dates=[1,3],
    infer_datetime_format=True,
    cache_dates=True,
    dtype = {'SEQ_REASON': 'category',
             'SENDING_LAB_PC': 'category',
             'SEQUENCING_LAB_PC': 'category',
             'lineage': 'category',
             'scorpio_call': 'category'
             }
)
#%%
df.rename(columns={
    'DATE_DRAW': 'date',
    'PROCESSING_DATE': 'processing_date',
    'SEQ_REASON': 'reason',
    'SENDING_LAB_PC': 'sending_pc',
    'SEQUENCING_LAB_PC': 'sequencing_pc',
    'lineage': 'lineage',
    'scorpio_call': 'scorpio'
    },
    inplace=True
)
df

License

The underlying files that I use as input are licensed by RKI under CC-BY 4.0, see more details here: https://github.com/robert-koch-institut/SARS-CoV-2-Sequenzdaten_aus_Deutschland#lizenz.

The software here is licensed under the "Unlicense". You can do with it whatever you want.

For the data, just cite the original source, no need to cite this repo since it's just a trivial join.

Owner
Cornelius Roemer
Cornelius Roemer
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet]

BGNet This repository contains the code for our CVPR 2021 paper Bilateral Grid Learning for Stereo Matching Network [BGNet] Environment Python 3.6.* C

3DCV developer 87 Nov 29, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022