Puzzle-CAM: Improved localization via matching partial and full features.

Overview

PWC PWC

Puzzle-CAM

The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Citation

Please cite our paper if the code is helpful to your research. arxiv

@article{jo2021puzzle,
  title={Puzzle-CAM: Improved localization via matching partial and full features},
  author={Jo, Sanhyun and Yu, In-Jae},
  journal={arXiv preprint arXiv:2101.11253},
  year={2021}
}

Abstract

Weakly-supervised semantic segmentation (WSSS) is introduced to narrow the gap for semantic segmentation performance from pixel-level supervision to image-level supervision. Most advanced approaches are based on class activation maps (CAMs) to generate pseudo-labels to train the segmentation network. The main limitation of WSSS is that the process of generating pseudo-labels from CAMs which use an image classifier is mainly focused on the most discriminative parts of the objects. To address this issue, we propose Puzzle-CAM, a process minimizes the differences between the features from separate patches and the whole image. Our method consists of a puzzle module (PM) and two regularization terms to discover the most integrated region of in an object. Without requiring extra parameters, Puzzle-CAM can activate the overall region of an object using image-level supervision. In experiments, Puzzle-CAM outperformed previous state-of-the-art methods using the same labels for supervision on the PASCAL VOC 2012 test dataset.

Overview

Overall architecture


Prerequisite

  • Python 3.8, PyTorch 1.7.0, and more in requirements.txt
  • CUDA 10.1, cuDNN 7.6.5
  • 4 x Titan RTX GPUs

Usage

Install python dependencies

python3 -m pip install -r requirements.txt

Download PASCAL VOC 2012 devkit

Follow instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit

1. Train an image classifier for generating CAMs

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_classification_with_puzzle.py --architecture resnest101 --re_loss_option masking --re_loss L1_Loss --alpha_schedule 0.50 --alpha 4.00 --tag [email protected]@optimal --data_dir $your_dir

2. Apply Random Walk (RW) to refine the generated CAMs

2.1. Make affinity labels to train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 inference_classification.py --architecture resnest101 --tag [email protected]@optimal --domain train_aug --data_dir $your_dir
python3 make_affinity_labels.py --experiment_name [email protected]@[email protected]@scale=0.5,1.0,1.5,2.0 --domain train_aug --fg_threshold 0.40 --bg_threshold 0.10 --data_dir $your_dir

2.2. Train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 train_affinitynet.py --architecture resnest101 --tag [email protected]@Puzzle --label_name [email protected]@opt[email protected]@scale=0.5,1.0,1.5,[email protected]_fg=0.40_bg=0.10 --data_dir $your_dir

3. Train the segmentation model using the pseudo-labels

3.1. Make segmentation labels to train segmentation model.

CUDA_VISIBLE_DEVICES=0 python3 inference_rw.py --architecture resnest101 --model_name [email protected]@Puzzle --cam_dir [email protected]@op[email protected]@scale=0.5,1.0,1.5,2.0 --domain train_aug --data_dir $your_dir
python3 make_pseudo_labels.py --experiment_name [email protected]@[email protected]@[email protected][email protected] --domain train_aug --threshold 0.35 --crf_iteration 1 --data_dir $your_dir

3.2. Train segmentation model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag [email protected]@[email protected] --label_name [email protected]@[email protected]@[email protected][email protected]@crf=1 --data_dir $your_dir

4. Evaluate the models

CUDA_VISIBLE_DEVICES=0 python3 inference_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag [email protected]@[email protected] --scale 0.5,1.0,1.5,2.0 --iteration 10

python3 evaluate.py --experiment_name [email protected]@[email protected]@[email protected]=0.5,1.0,1.5,[email protected]=10 --domain val --data_dir $your_dir/SegmentationClass

5. Results

Qualitative segmentation results on the PASCAL VOC 2012 validation set. Top: original images. Middle: ground truth. Bottom: prediction of the segmentation model trained using the pseudo-labels from Puzzle-CAM. Overall architecture

Methods background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mIoU
Puzzle-CAM with ResNeSt-101 88.9 87.1 38.7 89.2 55.8 72.8 89.8 78.9 91.3 26.8 84.4 40.3 88.9 81.9 83.1 34.0 60.1 83.6 47.3 59.6 38.8 67.7
Puzzle-CAM with ResNeSt-269 91.1 87.2 37.3 86.8 61.4 71.2 92.2 86.2 91.8 28.6 85.0 64.1 91.8 82.0 82.5 70.7 69.4 87.7 45.4 67.0 37.7 72.2

For any issues, please contact Sanghyun Jo, [email protected]

Comments
  • ModuleNotFoundError: No module named 'core.sync_batchnorm'

    ModuleNotFoundError: No module named 'core.sync_batchnorm'

    `

    ModuleNotFoundError Traceback (most recent call last) in 1 from core.puzzle_utils import * ----> 2 from core.networks import * 3 from core.datasets import * 4 5 from tools.general.io_utils import *

    /working/PuzzleCAM/core/networks.py in 24 # Normalization 25 ####################################################################### ---> 26 from .sync_batchnorm.batchnorm import SynchronizedBatchNorm2d 27 28 class FixedBatchNorm(nn.BatchNorm2d):

    ModuleNotFoundError: No module named 'core.sync_batchnorm' `

    opened by Ashneo07 2
  • performance issue

    performance issue

    When I used the released weights for inference phase and evaluation, I found that the mIoU I got was different from the mIoU reported in the paper. I would like to ask whether this weight is corresponding to the paper, if it is, how to reproduce the result in your paper. Looking forward to your reply.

    PuzzleCAM PuzzleCAM2

    opened by linjiatai 0
  • Evaluation in classifier training is using supervised segmentation maps?

    Evaluation in classifier training is using supervised segmentation maps?

    Hello, thank you for the great repository! It's pretty impressive how organized it is.

    I have a critic (or maybe a question, in case I got it wrong) regarding the training of the classifier, though: I understand the importance of measuring and logging the mIoU during training (specially when creating the ablation section in your paper), however it doesn't strike me as correct to save the model with best mIoU. This procedural decision is based on fully supervised segmentation information, which should not be available for a truly weakly supervised problem; while resulting in a model better suited for segmentation. The paper doesn't address this. Am I right to assume all models were trained like this? Were there any trainings where other metrics were considered when saving the model (e.g. classification loss or Eq (7) in the paper)?

    opened by lucasdavid 0
  • error occured when image-size isn't 512 * n

    error occured when image-size isn't 512 * n

    dear author: I notice that if the image size isn't 512 x 512, it will have some error. I use image size 1280 x 496 and i got tensor size error at calculate puzzle module:the original feature is 31 dims and re_feature is 32 dims. So i have to change image size to 1280 x 512 and i work. So i think this maybe a little bug. It will better that you fixed it or add a notes in code~ Thanks for your job!

    opened by hazy-wu 0
  • the backbone of Affinitynet is resnet38. Why did you write resnet50?

    the backbone of Affinitynet is resnet38. Why did you write resnet50?

    In Table 2 of your paper, the backbone of Affinitynet is resnet38. Why did you write resnet50? After my experiment, I found that RW result reached 65.42% for Affinitynet which is based on resnet50 and higher than yours.

    opened by songyukino1 0
  • Ask for details of the training process!

    Ask for details of the training process!

    I am trying to train with ResNest101, and I also added affinity and RW. When I try to train, it runs according to the specified code. It is found that the obtained affinity labels are not effective, and the effect of pseudo_labels is almost invisible, which is close to the effect of all black. I don't know where the problem is, who can explain the details. help!

    opened by YuYue26 1
Releases(v1.0)
Owner
Sanghyun Jo
e-mail : [email protected] # DeepLearning #Computer Vision #AutoML #Se
Sanghyun Jo
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022