This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

Related tags

Deep LearningERASOR
Overview

🌈 ERASOR (RA-L'21 with ICRA Option)

Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point Cloud Map Building", which is accepted by RA-L with ICRA'21 option [Demo Video].

overview

We provide all contents including

  • Source code of ERASOR
  • All outputs of the State-of-the-arts
  • Visualization
  • Calculation code of Preservation Rate/Rejection Rate

So enjoy our codes! :)

Contact: Hyungtae Lim ([email protected])

Advisor: Hyun Myung ([email protected])

Contents

  1. Test Env.
  2. Requirements
  3. How to Run ERASOR
  4. Calculate PR/RR
  5. Benchmark
  6. Run Your Own Code
  7. Visualization of All the State-of-the-arts
  8. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

  • Install ROS on a machine.
  • Also, jsk-visualization is required to visualize Scan Ratio Test (SRT) status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins

Buildg Our Package

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/ERASOR.Official.git
cd .. && catkin build erasor 

Python Setting

  • Our metric calculation for PR/RR code is implemented by python2.7
  • To run the python code, following pakages are necessary: pypcd, tqdm, scikit-learn, and tabulate
pip install pypcd
pip install tqdm	
pip install scikit-learn
pip install tabulate

Prepared dataset

  • Download the preprocessed KITTI data encoded into rosbag.
  • The downloading process might take five minutes or so. All rosbags requires total 2.3G of storage space
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/00_4390_to_4530_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/01_150_to_250_w_interval_1_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/02_860_to_950_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/05_2350_to_2670_w_interval_2_node.bag
wget https://urserver.kaist.ac.kr/publicdata/erasor/rosbag/07_630_to_820_w_interval_2_node.bag

Description of Preprocessed Rosbag Files

  • Please note that the rosbag consists of node. Refer to msg/node.msg.
  • Note that each label of the point is assigned in intensity for the sake of convenience.
  • And we set the following classes are dynamic classes:
# 252: "moving-car"
# 253: "moving-bicyclist"
# 254: "moving-person"
# 255: "moving-motorcyclist"
# 256: "moving-on-rails"
# 257: "moving-bus"
# 258: "moving-truck"
# 259: "moving-other-vehicle"
  • Please refer to std::vector DYNAMIC_CLASSES in our code :).

How to Run ERASOR

We will explain how to run our code on seq 05 of the KITTI dataset as an example.

Step 1. Build naive map

kittimapgen

  • Set the following parameters in launch/mapgen.launch.
    • target_rosbag: The name of target rosbag, e.g. 05_2350_to_2670_w_interval_2_node.bag
    • save_path: The path where the naively accumulated map is saved.
  • Launch mapgen.launch and play corresponding rosbag on the other bash as follows:
roscore # (Optional)
roslaunch erasor mapgen.launch
rosbag play 05_2350_to_2670_w_interval_2_node.bag
  • Then, dense map and voxelized map are auto-saved at the save path. Note that the dense map is used to fill corresponding labels (HERE). The voxelized map will be an input of step 2 as a naively accumulated map.

Step 2. Run ERASOR erasor

  • Set the following parameters in config/seq_05.yaml.

    • initial_map_path: The path of naively accumulated map
    • save_path: The path where the filtered static map is saved.
  • Run the following command for each bash.

roscore # (Optional)
roslaunch erasor run_erasor.launch target_seq:="05"
rosbag play 05_2350_to_2672_w_interval_2_node.bag
  • IMPORTANT: After finishing running ERASOR, run the following command to save the static map as a pcd file on another bash.
  • "0.2" denotes voxelization size.
rostopic pub /saveflag std_msgs/Float32 "data: 0.2"
  • Then, you can see the printed command as follows:

fig_command

  • The results will be saved under the save_path folder, i.e. $save_path$/05_result.pcd.

Calculate PR/RR

You can check our results directly.

  • First, download all pcd materials.
wget https://urserver.kaist.ac.kr/publicdata/erasor/erasor_paper_pcds.zip
unzip erasor_paper_pcds.zip

Then, run the analysis code as follows:

python analysis.py --gt $GT_PCD_PATH$ --est $EST_PCD_PATH$

E.g,

python analysis.py --gt /home/shapelim/erasor_paper_pcds/gt/05_voxel_0_2.pcd --est /home/shapelim/erasor_paper_pcds/estimate/05_ERASOR.pcd

NOTE: For estimating PR/RR, more dense pcd file, which is generated in the mapgen.launch procedure, is better to estimate PR/RR precisely.

Benchmark

  • Error metrics are a little bit different from those in the paper:

    Seq. PR [%] RR [%]
    00 91.72 97.00
    01 91.93 94.63
    02 81.08 99.11
    05 86.98 97.88
    07 92.00 98.33
  • But we provide all pcd files! Don't worry. See Visualization of All the State-of-the-arts Section.

Run Your Own Code

⚠️ TBU: The code is already in this repository, yet the explanation is incomplete.

Visualization of All the State-of-the-arts

  • First, download all pcd materials.
wget https://urserver.kaist.ac.kr/publicdata/erasor/erasor_paper_pcds.zip
unzip erasor_paper_pcds.zip
  • Set parameters in config/viz_params.yaml correctly

    • abs_dir: The absolute directory of pcd directory
    • seq: Target sequence (00, 01, 02, 05, or 07)
  • After setting the parameters, launch following command:

roslaunch erasor compare_results.launch

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021erasor,
title={ERASOR: Egocentric Ratio of Pseudo Occupancy-Based Dynamic Object Removal for Static 3D Point Cloud Map Building},
author={Lim, Hyungtae and Hwang, Sungwon and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
volume={6},
number={2},
pages={2272--2279},
year={2021},
publisher={IEEE}
}
Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis

This repository contains the official implementation code of the paper Transformer-based Feature Reconstruction Network for Robust Multimodal Sentiment Analysis, accepted at ACMMM 2021.

Ziqi Yuan 10 Sep 30, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023