The Fuzzy Labs guide to the universe of open source MLOps

Overview

Open Source MLOps

This is the Fuzzy Labs guide to the universe of free and open source MLOps tools.

Contents

What is MLOps anyway?

MLOps (machine learning operations) is a discipline that helps people to train, deploy and run machine learning models successfully in production environments. Because this is a new and rapidly-evolving field, there are a lot of tools out there, and new ones appear all the time. If we've missed any, then please do raise a pull request!

Data version control

Just like code, data grows and evolves over time. Data versioning tools help you to keep track of these changes.

You might wonder why you can't just store data in Git (or equivalent). There are a few reasons this doesn't work, but the main one is size: Git is designed for small text files, and typical datasets used in machine learning are just too big. Some tools, like DVC, store the data externally, but also integrate with Git so that data versions can be linked to code versions.

  • DVC - one of the most popular general-purpose data versioning tools.
  • Delta Lake - data versioning for data warehouses.
  • LakeFS - Transform your object storage into a Git-like repository.
  • Git LFS - while this doesn't specialise in machine learning use-cases, it's another popular way to version datasets.

Experiment tracking

Machine learning involves a lot of experimentation. We end up training a lot of models, most of which are never intended to go into production, but represent progressive steps towards having something production-worthy. Experiment tracking tools are there to help us keep track of each experiment. What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

Model training

Feature stores

Model deployment and serving

Model serving is the process of taking a trained model and presenting it behind a REST API, and this enables other software components to interact with a model. To make deployment of these model servers as simple as possible, it's commonplace to run them inside Docker containers and deploy them to a container orchestration system such as Kubernetes.

Model monitoring

Full stacks

More resources

Here are some more resources for MLOps, both open-source and proprietary.

Comments
  • Data Catalogues

    Data Catalogues

    Just a short snippet on Data Catalogues. Almost started trying to build out a custom one because I didn't know they existed. Therefore feel it's important to make some noise about them.

    Open to feedback, can add more detail once I know if you guys think they fit the MLOps category. Only didn't put them under the Data Governance bin because those that focus on Data Discovery don't have so much to do with it. Happy to shuffle the content over though.

    opened by GeorgePearse 3
  • Add feathr (feature store by Linkedin)

    Add feathr (feature store by Linkedin)

    This PR adds Feathr

    About Feathr:

    Feathr is an open source enterprise-grade, high performance feature store, hosted in incubation in the LF AI & Data Foundation.

    @archena Please let me know if any changes are needed for the description.

    opened by SangamSwadiK 1
  • add new section for Model validation, with trubrics

    add new section for Model validation, with trubrics

    Hello, we have recently launched Trubrics and I'd love to add it to your great list!

    Trubrics helps Data Scientists validate their models, by providing them with a framework to write validations. Validations can be built purely with data science knowledge, or with feedback collected from business users on ML models.

    Thanks :grinning:

    opened by jeffkayne 1
  • Added MLEM and put description for CML

    Added MLEM and put description for CML

    Hello! We have a new MLOPs tool we'd love to add to the awesome-open-mlops!

    You can find the repo here: https://github.com/iterative/mlem Read the blog post: https://iterative.ai/blog/MLEM-release Watch the video: https://youtu.be/7h0fiZNwCnA

    Let me know if you need anything else or would like to collaborate in some way! Best regards...

    opened by mertbozkir 1
  • Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few hopefully interesting repos, all OS focused. I used monitoring for RecList even if (interestingly) is probably in his own category (with CheckList for example): "model testing", or something like that!

    opened by jacopotagliabue 1
  • Update the open source MLOps repo with data annotation

    Update the open source MLOps repo with data annotation

    Picked out the most interesting tools from this repo built by ZenML. Added a new section to our repo for data annotation. Include a link to ZenML’s repo as well.

    opened by osw282 1
  • chore: Add envd

    chore: Add envd

    I'd like to share envd with the community!

    envd is a machine learning development environment for data science and AI/ML engineering teams.

    🐍 No Docker, only Python - Focus on writing Python code, we will take care of Docker and development environment setup.

    🖨️ Built-in Jupyter/VSCode - First-class support for Jupyter and VSCode remote extension.

    ⏱️ Save time - Better cache management to save your time, keep the focus on the model, instead of dependencies.

    ☁️ Local & cloud - envd integrates seamlessly with Docker so that you can easily share, version, and publish envd environments with Docker Hub or any other OCI image registries.

    🔁 Repeatable builds & reproducible results - You can reproduce the same dev environment on your laptop, public cloud VMs, or Docker containers, without any change in setup.

    Signed-off-by: Ce Gao [email protected]

    opened by gaocegege 1
  • Adds a section for model registries

    Adds a section for model registries

    👋 Hello!

    This PR adds a new section for model registries and I've added both ML Flow and modelstore to it. Disclosure: I'm the author of the latter.

    When reading through the other sections, I saw that this might overlap slightly with experiment tracking, which is described as:

    What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

    Happy to change this around as you see fit.

    Thank you for considering this contribution 🙏

    opened by nlathia 1
  • Adds Hamilton and feature engineering section

    Adds Hamilton and feature engineering section

    Hamilton was created to help wrangle a feature engineering code base. It forces decoupling of feature transform logic from materialization, and results in code that is always unit testable, reusable, and documentation friendly.

    I didn't see an appropriate section to add it, so I created a feature engineering section - putting it in feature stores wouldn't be the right place.

    opened by skrawcz 1
  • Image Analysis Tools

    Image Analysis Tools

    I've synced the forks. I have no idea why my previous data catalogue addition is listed again as a new change? Will correct that if anyone can tell me where I've gone wrong.

    I've hit my limit of GitHub lists so will be making greater use of this repo. Adding in image analysis tools (fiftyone - the dominant player, and dendromap - looks very powerful).

    Will add links, and try to get round to adding descriptions for data catalogues soon

    opened by GeorgePearse 1
  • Deepchecks library

    Deepchecks library

    Deepchecks is open source tool for testing and validating machine learning models and data. The 3 checks supported in different phases of ML pipeline are

    • Data Integrity (between ingestion and preprocessing step)
    • Train-Test Validation (Distribution and Methodology Checks) (between preprocessing and training step)
    • Model Performance Evaluation (evaluation step)
    opened by dudeperf3ct 0
Releases(v0.1.0-alpha)
  • v0.1.0-alpha(Dec 13, 2021)

    Initial release of the Awesome Open Source MLOps list.

    • Data version control
    • Experiment tracking
    • Model training
    • Feature stores
    • Model deployment and serving
    • Model monitoring
    • Full stacks
    Source code(tar.gz)
    Source code(zip)
Owner
Fuzzy Labs
MLOps done right
Fuzzy Labs
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022