hgboost - Hyperoptimized Gradient Boosting

Overview

hgboost - Hyperoptimized Gradient Boosting

Python PyPI Version License Github Forks GitHub Open Issues Project Status Downloads Downloads Sphinx Open In Colab BuyMeCoffee DOI

Star it if you like it!

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results on an independent validation set. hgboost can be applied for classification and regression tasks.

hgboost is fun because:

* 1. Hyperoptimization of the Parameter-space using bayesian approach.
* 2. Determines the best scoring model(s) using k-fold cross validation.
* 3. Evaluates best model on independent evaluation set.
* 4. Fit model on entire input-data using the best model.
* 5. Works for classification and regression
* 6. Creating a super-hyperoptimized model by an ensemble of all individual optimized models.
* 7. Return model, space and test/evaluation results.
* 8. Makes insightful plots.

Documentation

Regression example Open regression example In Colab

Classification example Open classification example In Colab

Schematic overview of hgboost

Installation Environment

  • Install hgboost from PyPI (recommended). hgboost is compatible with Python 3.6+ and runs on Linux, MacOS X and Windows.
  • A new environment is recommended and created as following:
conda create -n env_hgboost python=3.6
conda activate env_hgboost

Install newest version hgboost from pypi

pip install hgboost

Force to install latest version

pip install -U hgboost

Install from github-source

pip install git+https://github.com/erdogant/hgboost#egg=master

Import hgboost package

import hgboost as hgboost

Classification example for xgboost, catboost and lightboost:

# Load library
from hgboost import hgboost

# Initialization
hgb = hgboost(max_eval=10, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=42)
# Import data
df = hgb.import_example()
y = df['Survived'].values
y = y.astype(str)
y[y=='1']='survived'
y[y=='0']='dead'

# Preprocessing by encoding variables
del df['Survived']
X = hgb.preprocessing(df)
# Fit catboost by hyperoptimization and cross-validation
results = hgb.catboost(X, y, pos_label='survived')

# Fit lightboost by hyperoptimization and cross-validation
results = hgb.lightboost(X, y, pos_label='survived')

# Fit xgboost by hyperoptimization and cross-validation
results = hgb.xgboost(X, y, pos_label='survived')

# [hgboost] >Start hgboost classification..
# [hgboost] >Collecting xgb_clf parameters.
# [hgboost] >Number of variables in search space is [11], loss function: [auc].
# [hgboost] >method: xgb_clf
# [hgboost] >eval_metric: auc
# [hgboost] >greater_is_better: True
# [hgboost] >pos_label: True
# [hgboost] >Total dataset: (891, 204) 
# [hgboost] >Hyperparameter optimization..
#  100% |----| 500/500 [04:39<05:21,  1.33s/trial, best loss: -0.8800619834710744]
# [hgboost] >Best performing [xgb_clf] model: auc=0.881198
# [hgboost] >5-fold cross validation for the top 10 scoring models, Total nr. tests: 50
# 100%|██████████| 10/10 [00:42<00:00,  4.27s/it]
# [hgboost] >Evalute best [xgb_clf] model on independent validation dataset (179 samples, 20.00%).
# [hgboost] >[auc] on independent validation dataset: -0.832
# [hgboost] >Retrain [xgb_clf] on the entire dataset with the optimal parameters settings.
# Plot searched parameter space 
hgb.plot_params()

# Plot summary results
hgb.plot()

# Plot the best tree
hgb.treeplot()

# Plot the validation results
hgb.plot_validation()

# Plot the cross-validation results
hgb.plot_cv()

# use the learned model to make new predictions.
y_pred, y_proba = hgb.predict(X)

Create ensemble model for Classification

from hgboost import hgboost

hgb = hgboost(max_eval=100, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=None, verbose=3)

# Import data
df = hgb.import_example()
y = df['Survived'].values
del df['Survived']
X = hgb.preprocessing(df, verbose=0)

results = hgb.ensemble(X, y, pos_label=1)

# use the predictor
y_pred, y_proba = hgb.predict(X)

Create ensemble model for Regression

from hgboost import hgboost

hgb = hgboost(max_eval=100, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, random_state=None, verbose=3)

# Import data
df = hgb.import_example()
y = df['Age'].values
del df['Age']
I = ~np.isnan(y)
X = hgb.preprocessing(df, verbose=0)
X = X.loc[I,:]
y = y[I]

results = hgb.ensemble(X, y, methods=['xgb_reg','ctb_reg','lgb_reg'])

# use the predictor
y_pred, y_proba = hgb.predict(X)
# Plot the ensemble classification validation results
hgb.plot_validation()

References

* http://hyperopt.github.io/hyperopt/
* https://github.com/dmlc/xgboost
* https://github.com/microsoft/LightGBM
* https://github.com/catboost/catboost

Maintainers

Contribute

  • Contributions are welcome.

Licence See LICENSE for details.

Coffee

  • If you wish to buy me a Coffee for this work, it is very appreciated :)
Comments
  • import error during import hgboost

    import error during import hgboost

    When I finished installation of hgboost and try to import hgboost,there is something wrong,could you please help me out? Details are as follows:

    ImportError Traceback (most recent call last) in ----> 1 from hgboost import hgboost

    C:\ProgramData\Anaconda3\lib\site-packages\hgboost_init_.py in ----> 1 from hgboost.hgboost import hgboost 2 3 from hgboost.hgboost import ( 4 import_example, 5 )

    C:\ProgramData\Anaconda3\lib\site-packages\hgboost\hgboost.py in 9 import classeval as cle 10 from df2onehot import df2onehot ---> 11 import treeplot as tree 12 import colourmap 13

    C:\ProgramData\Anaconda3\lib\site-packages\treeplot_init_.py in ----> 1 from treeplot.treeplot import ( 2 plot, 3 randomforest, 4 xgboost, 5 lgbm,

    C:\ProgramData\Anaconda3\lib\site-packages\treeplot\treeplot.py in 14 import numpy as np 15 from sklearn.tree import export_graphviz ---> 16 from sklearn.tree.export import export_text 17 from subprocess import call 18 import matplotlib.image as mpimg

    ImportError: cannot import name 'export_text' from 'sklearn.tree.export'

    thanks a lot!

    opened by recherHE 3
  • Test:Validation:Train split

    Test:Validation:Train split

    Shouldn't be the new test-train split be test_size=self.test_size/(1-self.val_size) in def _HPOpt(self):. We updated the shape of X in _set_validation_set(self, X, y)

    I'm assuming that the test, train, and validation set ratios are defined on the original data.

    opened by SSLPP 3
  • Treeplot failure - missing graphviz dependency

    Treeplot failure - missing graphviz dependency

    I'm running through the example classification notebook now, and the treeplot fails to render, with the following warning:

    Screen Shot 2022-10-04 at 14 30 21

    It seems that graphviz being a compiled c library is not bundled in pip (it is included in conda install treeplot/graphviz though).

    Since we have no recourse to add this to pip requirements, maybe a sentence in the Instalation instructions warning that graphviz must already be available and/or installed separately.

    (note the suggested apt command for linux is not entirely necessary, because pydot does get installed with treeplot via pip)

    opened by ninjit 2
  • Getting the native model for compatibility with shap.TreeExplainer

    Getting the native model for compatibility with shap.TreeExplainer

    Hello, first of all really nice project. I've just found out about it today and started playing with it a little bit. Is there any way to get the trained model as an XGBoost, LightGBM or CatBoost class in order to fit a shap.TreeExplainer instance to it?

    Thanks in advance! -Nicolás

    opened by nicolasaldecoa 2
  • Xgboost parameter

    Xgboost parameter

    After using the code hgb.plot_params(), the parameter of learning rate is 796. I don't think it's reasonable. Can I see the model parameters optimized by using HyperOptimized parameters?

    QQ截图20210705184733

    opened by LAH19999 2
  • HP Tuning: best_model uses different parameters from those that were reported as best ones

    HP Tuning: best_model uses different parameters from those that were reported as best ones

    I used hgboost for optimizing the hyper-parameters of my XGBoost model as described in the API References with the following parameters:

    hgb = hgboost()
    results = hgb.xgboost(X_train, y_train, pos_label=1, method='xgb_clf', eval_metric='logloss')
    

    As noted in the documentation, results is a dictionary that, among other things, returns the best performing parameters (best_params) and the best performing model (model). However, the parameters that the best performing model uses are different from what the function returns as best_params:

    best_params

    'params': {'colsample_bytree': 0.47000000000000003,
      'gamma': 1,
      'learning_rate': 534,
      'max_depth': 49,
      'min_child_weight': 3.0,
      'n_estimators': 36,
      'subsample': 0.96}
    

    model

    'model': XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                   colsample_bynode=1, colsample_bytree=0.47000000000000003,
                   enable_categorical=False, gamma=1, gpu_id=-1,
                   importance_type=None, interaction_constraints='',
                   learning_rate=0.058619090164329916, max_delta_step=0,
                   max_depth=54, min_child_weight=3.0, missing=nan,
                   monotone_constraints='()', n_estimators=200, n_jobs=-1,
                   num_parallel_tree=1, predictor='auto', random_state=0,
                   reg_alpha=0, reg_lambda=1, scale_pos_weight=0.5769800646551724,
                   subsample=0.96, tree_method='exact', validate_parameters=1,
                   verbosity=0),
    

    As you can see, for example, max_depth=49 in the best_params, but the model uses max_depth=54 etc.

    Is this a bug or the intended behavior? In case of the latter, I'd really appreciate an explanation!

    My setup:

    • OS: WSL (Ubuntu)
    • Python: 3.9.7
    • hgboost: 1.0.0
    opened by Mikki99 1
  • Running regression example error

    Running regression example error

    opened by recherHE 1
  • Error in rmse calculaiton

    Error in rmse calculaiton

    if self.eval_metric=='rmse':
                    loss = mean_squared_error(y_test, y_pred)
    

    mean_squared_error in sklearn gives mse, use mean_squared_error(y_true, y_pred, squared=False) for rmse

    opened by SSLPP 1
  • numpy.AxisError: axis 1 is out of bounds for array of dimension 1

    numpy.AxisError: axis 1 is out of bounds for array of dimension 1

    When eval_metric is auc, it raises an error. The related line is hgboost.py:906 and the related issue is: https://stackoverflow.com/questions/61288972/axiserror-axis-1-is-out-of-bounds-for-array-of-dimension-1-when-calculating-auc

    opened by quancore 0
  • ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].

    ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].

    There is an error when f1 score is used for multı-class classification. The error of line is on hgboost.py:904 while calculating f1 score, average param default is binary which is not suitable for multi-class.

    opened by quancore 0
Releases(1.1.3)
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Microsoft 5.6k Jan 07, 2023
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022