A simple guide to MLOps through ZenML and its various integrations.

Overview

ZenBytes

ZenML Logo

Join our Slack Slack Community and become part of the ZenML family
Give the main ZenML repo a Slack GitHub star to show your love

Sam

ZenBytes is a series of practical lessons about MLOps through ZenML and its various integrations. It is intended for people looking to learn about MLOps generally, and also practitioners specifically looking to learn more about ZenML.

πŸ™ About ZenML

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. Built for data scientists, it has a simple, flexible syntax, is cloud- and tool-agnostic, and has interfaces/abstractions that are catered towards ML workflows. The ZenML repository and Docs has more details.

ZenML is a good tool to learn MLOps because of two reasons:

πŸ”Ή ZenML focuses on being un-opinionated about underlying tooling and infrastructure across the MLOps stack. πŸ”Ή ZenML presents itself as a pipeline tool, making all development in ZenML data-centric rather than model-centric.

🧱 Structure of Lessons

The lessons are structured in Chapters. Each chapter is a notebook that walks through and explains various concepts:

  • Chapter 0: Basics
  • Chapter 1: Building a ML(Ops) pipeline
  • Chapter 2: Transitioning across stacks
  • Coming soon: More chapters

πŸ’» System Requirements

In order to run these lessons, you need to have some packages installed on your machine. Note you only need these for some parts, and you might get away with only Python and pip install requirements.txt for some parts of the codebase, but we recommend installing all these:

Currently, this will only run on UNIX systems.

package MacOS installation Linux installation
docker Docker Desktop for Mac Docker Engine for Linux
kubectl kubectl for mac kubectl for linux
k3d Brew Installation of k3d k3d installation linux

You might also need to install Anaconda to get the MLflow deployment to work.

🐍 Python Requirements

Once you've got the system requirements figured out, let's jump into the Python packages you need. Within the Python environment of your choice, run:

git clone https://github.com/zenml-io/zenbytes
pip install -r requirements.txt

If you are running the run.py script, you will also need to install some integrations using zenml:

zenml integration install sklearn -f
zenml integration install dash -f
zenml integration install evidently -f
zenml integration install mlflow -f
zenml integration install kubeflow -f
zenml integration install seldon -f

πŸ““ Diving into the code

We're ready to go now. You can go through the notebook step-by-step guide:

jupyter notebook

🏁 Cleaning up when you're done

Once you are done running all notebooks you might want to stop all running processes. For this, run the following command. (This will tear down your k3d cluster and the local docker registry.)

zenml stack set aws_kubeflow_stack
zenml stack down -f
zenml stack set local_kubeflow_stack
zenml stack down -f

❓ FAQ

  1. MacOS When starting the container registry for Kubeflow, I get an error about port 5000 not being available. OSError: [Errno 48] Address already in use

Solution: In order for Kubeflow to run, the docker container registry currently needs to be at port 5000. MacOS, however, uses port 5000 for the Airplay receiver. Here is a guide on how to fix this Freeing up port 5000.

Owner
ZenML
Building production MLOps tooling.
ZenML
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. πŸ“š docs β€’ πŸ“– demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022