Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Overview

Databricks Certification Spark

Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks. This is extensively used as part of our Udemy courses as well as our upcoming guided programs related to Databricks Certified Associate Spark Developer.

Udemy Courses

This GitHub repository can be leveraged to setup Single Node Spark Cluster using Standalone along with Jupyterlab to prepare for the Databricks Certified Associate Developer - Apache Spark. They are available at a max of $25 and we provide $10 coupons 2 times every month. Also, these courses are part of Udemy for business.

Technologies Covered

As part of this custom image built by us, we have included the following as a preparation toolkit for Databricks Certified Associate Developer - Apache Spark.

  • Apache Spark 3 using Spark Stand Alone Cluster
  • Jupyter based environment along with material for the preparation towards Databricks Certified Associate Developer - Apache Spark
  • If you set up the environment as instructed as part of our courses then you will also get the data sets as well as material in the form of Jupyter Notebooks.

For all video lectures, up-to-date material, live support - feel free to sign up for our Udemy courses or our upcoming guided programs.

Setup Spark Lab for Databricks Certified Associate Developer - Apache Spark

Pre-requisites

Here are the pre-requisites to setup the lab.

  • Memory: 16 GB RAM
  • CPU: At least Quadcore
  • If you are using Windows or Mac, make sure to setup Docker Desktop.
  • If your system does not meet the requirement, you need to setup environment using AWS Cloud9.
  • Even if you have 16 GB RAM and the Quadcore CPU, the system might slow down once we start the docker containers due to the requirements of the resources. You can always use AWS Cloud9 as fallback option.
  • In my case, I will be demonstrating using Cloud9.

Configure Docker Desktop

If you are using Windows or Mac, you need to change the settings to use as much resources as possible.

  • Go to Docker Desktop preferences.
  • Change memory to 12 GB.
  • Change CPUs to the maximum number.

Setup Environment

Here are the steps one need to follow to setup the lab.

  • Clone the repository by running git clone https://github.com/itversity/databricks-certification-spark.

Pull the Image

Spark image is of moderate size. It is close to 1.5 GB.

  • Make sure to pull it before running docker-compose command to setup the lab.
  • You can pull the image using docker pull itversity/itvspark3.
  • You can validate if the image is successfully pulled or not by running docker images command.

Start Environment

Here are the steps to start the environment.

  • Run docker-compose up -d --build itvspark3.
  • It will set up single node Stand Alone Spark Cluster.
  • You can run docker-compose logs -f itvspark3 to review the progress. It will take some time to complete the setup process.
  • You can stop the environment using docker-compose stop command.

Access the Lab

Here are the steps to access the lab.

  • Make sure both Postgres and Jupyter Lab containers are up and running by using docker-compose ps
  • Get the token from the Jupyter Lab container using below command.
docker-compose exec itvspark3 \
  sh -c "cat .local/share/jupyter/runtime/jpserver-*.json"

Access Databricks Certified Associate Developer - Apache Spark Material

Once you login, you should be able to go through the module under itversity-material to access the content.

Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022