Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Overview

Consistent Depth of Moving Objects in Video

teaser

This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

This is not an officially supported Google product.

Installing Dependencies

We provide both conda and pip installations for dependencies.

  • To install with conda, run
conda create --name dynamic-video-depth --file ./dependencies/conda_packages.txt
  • To install with pip, run
pip install -r ./dependencies/requirements.txt

Training

We provide two preprocessed video tracks from the DAVIS dataset. To download the pre-trained single-image depth prediction checkpoints, as well as the example data, run:

bash ./scripts/download_data_and_depth_ckpt.sh

This script will automatically download and unzip the checkpoints and data. If you would like to download manually

To train using the example data, run:

bash ./experiments/davis/train_sequence.sh 0 --track_id dog

The first argument indicates the GPU id for training, and --track_id indicates the name of the track. ('dog' and 'train' are provided.)

After training, the results should look like:

Video Our Depth Single Image Depth

Dataset Preparation:

To help with generating custom datasets for training, We provide examples of preparing the dataset from DAVIS, and two sequences from ShutterStock, which are showcased in our paper.

The general work flow for preprocessing the dataset is:

  1. Calibrate the scale of camera translation, transform the camera matrices into camera-to-world convention, and save as individual files.

  2. Calculate flow between pairs of frames, as well as occlusion estimates.

  3. Pack flow and per-frame data into training batches.

To be more specific, example codes are provided in .scripts/preprocess

We provide the triangulation results here and here. You can download them in a single script by running:

bash ./scripts/download_triangulation_files.sh

Davis data preparation

  1. Download the DAVIS dataset here, and unzip it under ./datafiles.

  2. Run python ./scripts/preprocess/davis/generate_frame_midas.py. This requires trimesh to be installed (pip install trimesh should do the trick). This script projects the triangulated 3D points to calibrate camera translation scales.

  3. Run python ./scripts/preprocess/davis/generate_flows.py to generate optical flows between pairs of images. This stage requires RAFT, which is included as a submodule in this repo.

  4. Run python ./scripts/preprocess/davis/generate_sequence_midas.py to pack camera calibrations and images into training batches.

ShutterStock Videos

  1. Download the ShutterStock videos here and here.

  2. Cast the videos as images, put them under ./datafiles/shutterstock/images, and rename them to match the file names in ./datafiles/shutterstock/triangulation. Note that not all frames are triangulated; time stamp of valid frames are recorded in the triangulation file name.

  3. Run python ./scripts/preprocess/shutterstock/generate_frame_midas.py to pack per-frame data.

  4. Run python ./scripts/preprocess/shutterstock/generate_flows.py to generate optical flows between pairs of images.

  5. Run python ./scripts/preprocess/shutterstock/generate_sequence_midas.py to pack flows and per-frame data into training batches.

  6. Example training script is located at ./experiments/shutterstock/train_sequence.sh

Comments
  • question about the Pre-processing

    question about the Pre-processing

    Can you provide the code for preprocessing part? I wonder for dynamic video, how to get accurate camera pose and K? I see you use DAVIS for example, I want to know how to deal with other videos in this dataset.

    opened by Robertwyq 11
  • Parameter finetuning vs Output finetuning

    Parameter finetuning vs Output finetuning

    It seems that running gradient descent for the depth prediction network makes up the majority of the runtime of this method. The current MiDaS implementation (v3?) contains 1.3 GB of parameters, most of which are for the DPT-Large (https://github.com/isl-org/DPT) backbone.

    In your research, did you experiment with performance differences between 'parameter finetuning' and just simple 'output finetuning' for the depth predictions (like as discussed in the GLNet paper (https://arxiv.org/pdf/1907.05820.pdf))?

    I would also be curious about whether as a middle ground, maybe just finetuning the 'head' of the MiDaS network would be sufficient, and leave the much larger set of backbone parameters locked.

    Thanks!

    opened by carsonswope 0
  • How to get the triangulation files for customized videos?

    How to get the triangulation files for customized videos?

    Thanks for sharing this great work!

    I was wondering how to obtain the triangulation files when using my own videos. For example, the dog.intrinsics.txt, dog.matrices.txt, and the dog.obj.

    Are they calculated from colmap? Could you please provide some instructions to get them?

    opened by Cogito2012 0
  • Question about the colmap parameter setting and image resize need to convert the camera pose

    Question about the colmap parameter setting and image resize need to convert the camera pose

    This is very useful work, thanks. I use colmap automatic_reconstructor --camera_model FULL_OPENCV to process the dog training set in DAVIS to get the camera pose, then replacing ./datafiles/DAVIS/triangulation/, other training codes have not changed, but the depth result of each frame has become much worse. How to set the specific parameters of colmap preprocessing? In addition, the image is resized to a small image during training, does the camera pose information obtained by colmap need to be transformed according to resize?

    opened by mayunchao1994 2
  • Question about triangulation results file

    Question about triangulation results file

    This is a great project, Thanks for your work. I have download triangulation results from your link, but i only found dog.intrinsics.txt and train.intrinsics.txt, In DAVIS-2017-trainval-Full-Resolution.zip file, There are 90 files in it, I was wondering if you could share all the triangulation files about Davis and ShutterStock dataset, Thanks very much.

    opened by aiforworlds 0
  • Can not reproduce training result

    Can not reproduce training result

    As it has been mentioned in issue #9 "DAVIS datafiles uncomplete": "datafiles.tar in provided "Google Drive" download link consists only triangulation data. There are no "JPEGImages/1080p" and "Annotation//1080p" folders that "python ./scripts/preprocess/davis/generate_frame_midas.py" refers to." So, I manually downloaded missing data from https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-Unsupervised-trainval-Full-Resolution.zip After that the structure as follow:

    ├── datafiles
        ├── DAVIS
            ├── Annotations  --- missing in supplied download links, downloaded manually from DAVIS datasets 
                ├── 1080p
                    ├── dog
                    ├── train
            ├── JPEGImages  --- missing in supplied download links, downloaded manually from DAVIS datasets 
                ├── 1080p
                    ├── dog
                    ├── train
            ├── triangulation -- data from supplied link
    

    Only after that I could successfully performed all steps of suggested in "Davis data preparation":

    1. Run python ./scripts/preprocess/davis/generate_frame_midas.py.
    2. Run python ./scripts/preprocess/davis/generate_flows.py
    3. Run python ./scripts/preprocess/davis/generate_sequence_midas.py

    However still couldn't reproduce the presented result, running: bash ./experiments/davis/train_sequence.sh 0 --track_id dog

    Output & Stacktrace:

    
    D:\dynamic-video-depth-main>bash ./experiments/davis/train_sequence.sh 0 --track_id dog
    python train.py --net scene_flow_motion_field --dataset davis_sequence --track_id train --log_time --epoch_batches 2000 --epoch 20 --lr 1e-6 --html_logger --vali_batches 150 --batch_size 1 --optim adam --vis_batches_vali 4 --vis_every_vali 1 --vis_every_train 1 --vis_batches_train 5 --vis_at_start --tensorboard --gpu 0 --save_net 1 --workers 4 --one_way --loss_type l1 --l1_mul 0 --acc_mul 1 --disp_mul 1 --warm_sf 5 --scene_lr_mul 1000 --repeat 1 --flow_mul 1 --sf_mag_div 100 --time_dependent --gaps 1,2,4,6,8 --midas --use_disp --logdir './checkpoints/davis/sequence/' --suffix 'track_{track_id}_{loss_type}_wreg_{warm_reg}_acc_{acc_mul}_disp_{disp_mul}_flowmul_{flow_mul}_time_{time_dependent}_CNN_{use_cnn}_gap_{gaps}_Midas_{midas}_ud_{use_disp}' --test_template './experiments/davis/test_cmd.txt' --force_overwrite --track_id dog
      File "train.py", line 106
        str_warning, f'ignoring the gpu set up in opt: {opt.gpu}. Will use all gpus in each node.')
                                                                                                 ^
    SyntaxError: invalid syntax
    

    Noticed that there is no folder named ".checkpoints"

    Similar issue has been mentioned in issue #8 "SyntaxError: invalid syntax"

    Specs: Windows 10 Anaconda: conda 4.11.0 Python 3.7.10 GPU 12Gb Quadro M6000 All specified dependencies including RAFT are installed

    opened by makemota 0
  • DAVIS datafiles uncomplete?

    DAVIS datafiles uncomplete?

    "datafiles.tar" in provided "Google Drive" download link consists only triangulation data. There are no "JPEGImages/1080p" and "Annotation//1080p" folders that "python ./scripts/preprocess/davis/generate_frame_midas.py" refers to:

    ---
    data_list_root = "./datafiles/DAVIS/JPEGImages/1080p"
    camera_path = "./datafiles/DAVIS/triangulation"
    mask_path = './datafiles/DAVIS/Annotations/1080p'
    ---
    
    opened by semel1 1
Releases(sig2021_code_release)
Owner
Google
Google ❤️ Open Source
Google
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022