[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Related tags

Deep LearningTSA-Net
Overview

Tube Self-Attention Network (TSA-Net)

This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Quality Assessment (ACM-MM'21 Oral)

[arXiv] [supp] [slides] [poster] [video]

If this repository is helpful to you, please star it. If you find our work useful in your research, please consider citing:

@inproceedings{TSA-Net,
  title={TSA-Net: Tube Self-Attention Network for Action Quality Assessment},
  author={Wang, Shunli and Yang, Dingkang and Zhai, Peng and Chen, Chixiao and Zhang, Lihua},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021},
  pages={4902–4910},
  numpages={9}
}

User Guide

In this repository, we open source the code of TSA-Net on FR-FS dataset. The initialization process is as follows:

# 1.Clone this repository
git clone https://github.com/Shunli-Wang/TSA-Net.git ./TSA-Net
cd ./TSA-Net

# 2.Create conda env
conda create -n TSA-Net python
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

# 3.Download pre-trained model and FRFS dataset. All download links are listed as follow.
# PATH/TO/rgb_i3d_pretrained.pt 
# PATH/TO/FRFS 

# 4.Create data dir
mkdir ./data && cd ./data
mv PATH/TO/rgb_i3d_pretrained.pt ./
ln -s PATH/TO/FRFS ./FRFS

After initialization, please check the data structure:

.
├── data
│   ├── FRFS -> PATH/TO/FRFS
│   └── rgb_i3d_pretrained.pt
├── dataset.py
├── train.py
├── test.py
...

Download links:

Training & Evaluation

We provide the training and testing code of TSA-Net and Plain-Net. The difference between the two is whether the TSA module exists. This option is controlled by --TSA item.

python train.py --gpu 0 --model_path TSA-USDL --TSA
python test.py --gpu 0 --pt_w Exp/TSA-USDL/best.pth --TSA

python train.py --gpu 0 --model_path USDL
python test.py --gpu 0 --pt_w Exp/USDL/best.pth

Acknowledgement

Our code is adapted from MUSDL. We are very grateful for their wonderful implementation. All tracking boxes in our project are generated by SiamMask. We also sincerely thank them for their contributions.

Contact

If you have any questions about our work, please contact [email protected].

Owner
ShunliWang
ShunliWang
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022