Twin-deep neural network for semi-supervised learning of materials properties

Related tags

Deep Learningtsdnn
Overview

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction

Citation:

Semi-supervised teacher-student deep neural network for materials discovery” by Daniel Gleaves, Edirisuriya M. Dilanga Siriwardane,Yong Zhao, and JianjunHu.

Machine learning and evolution laboratory

Department of Computer Science and Engineering

University of South Carolina


This software package implements the Meta Pseudo Labels (MPL) semi-supervised learning method with Crystal Graph Convolutional Neural Networks (CGCNN) with that takes an arbitary crystal structure to predict material synthesizability and whether it has positive or negative formation energy

The package provides two major functions:

  • Train a semi-supervised TSDNN classification model with a customized dataset.
  • Predict material synthesizability and formation energy of new crystals with a pre-trained TSDNN model.

The following paper describes the details of the CGCNN architecture, a graph neural network model for materials property prediction: CGCNN paper

The following paper describes the details of the semi-supervised learning framework that we used in our model: Meta Pseudo Labels

Table of Contents

Prerequisites

This package requires:

If you are new to Python, the easiest way of installing the prerequisites is via conda. After installing conda, run the following command to create a new environment named cgcnn and install all prerequisites:

conda upgrade conda
conda create -n tsdnn python=3 scikit-learn pytorch torchvision pymatgen -c pytorch -c conda-forge

*Note: this code is tested for PyTorch v1.0.0+ and is not compatible with versions below v0.4.0 due to some breaking changes.

This creates a conda environment for running TSDNN. Before using TSDNN, activate the environment by:

conda activate tsdnn

Usage

Define a customized dataset

To input crystal structures to TSDNN, you will need to define a customized dataset. Note that this is required for both training and predicting.

Before defining a customized dataset, you will need:

  • CIF files recording the structure of the crystals that you are interested in
  • The target label for each crystal (not needed for predicting, but you need to put some random numbers in data_test.csv)

You can create a customized dataset by creating a directory root_dir with the following files:

  1. data_labeled.csv: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column recodes the known value of the target label.

  2. data_unlabeled.csv: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column can be filled with alternating 1 and 0 (the second column is still needed).

  3. atom_init.json: a JSON file that stores the initialization vector for each element. An example of atom_init.json is data/sample-regression/atom_init.json, which should be good for most applications.

  4. ID.cif: a CIF file that recodes the crystal structure, where ID is the unique ID for the crystal.

(4.) data_predict: a CSV file with two columns. The first column recodes a unique ID for each crystal, and the second column can be filled with alternating 1 and 0 (the second column is still needed). This is the file that will be used if you want to classify materials with predict.py.

The structure of the root_dir should be:

root_dir
├── data_labeled.csv
├── data_unlabeled.csv
├── data_test.csv
├── data_positive.csv (optional- for positive and unlabeled dataset generation)
├── data_unlabeled_full.csv (optional- for positive and unlabeled dataset generation, data_unlabeled.csv will be overwritten)
├── atom_init.json
├── id0.cif
├── id1.cif
├── ...

There is an example of customized a dataset in: data/example.

Train a TSDNN model

Before training a new TSDNN model, you will need to:

Then, in directory synth-tsdnn, you can train a TSDNN model for your customized dataset by:

python main.py root_dir

If you want to use the PU learning dataset generation, you can train a model using the --uds flag with the number of PU iterations to perform.

python main.py --uds 5 root_dir

You can set the number of training, validation, and test data with labels --train-size, --val-size, and --test-size. Alternatively, you may use the flags --train-ratio, --val-ratio, --test-ratio instead. Note that the ratio flags cannot be used with the size flags simultaneously. For instance, data/example has 10 data points in total. You can train a model by:

python main.py --train-size 6 --val-size 2 --test-size 2 data/example

or alternatively

python main.py --train-ratio 0.6 --val-ratio 0.2 --test-ratio 0.2 data/example

After training, you will get 5 files in synth-tsdnn directory.

  • checkpoints/teacher_best.pth.tar: stores the TSDNN teacher model with the best validation accuracy.
  • checkpoints/student_best.pth.tar" stores the TSDNN student model with the best validation accuracy.
  • checkpoints/t_checkpoint.pth.tar: stores the TSDNN teacher model at the last epoch.
  • checkpoints/s_checkpoint.pth.tar: stores the TSDNN student model at the last epoch.
  • results/validation/test_results.csv: stores the ID and predicted value for each crystal in training set.

Predict material properties with a pre-trained TSDNN model

Before predicting the material properties, you will need to:

  • Define a customized dataset at root_dir for all the crystal structures that you want to predict.
  • Obtain a pre-trained TSDNN model (example found in checkpoints/pre-trained/pre-train.pth.tar).

Then, in directory synth-tsdnn, you can predict the properties of the crystals in root_dir:

python predict.py checkpoints/pre-trained/pre-trained.pth.tar data/root_dir

After predicting, you will get one file in synth-tsdnn directory:

  • predictions.csv: stores the ID and predicted value for each crystal in test set.

Data

To reproduce our paper, you can download the corresponding datasets following the instruction. Each dataset discussed can be found in data/datasets/

Authors

This software was primarily written by Daniel Gleaves who was advised by Prof. Jianjun Hu. This software builds upon work by Tian Xie, Hieu Pham, and Jungdae Kim.

Acknowledgements

Research reported in this work was supported in part by NSF under grants 1940099 and 1905775. The views, perspective,and content do not necessarily represent the official views of NSF. This work was supported in part by the South Carolina Honors College Research Program. This work is partially supported by a grant from the University of South Carolina Magellan Scholar Program.

License

TSDNN is released under the MIT License.

Owner
MLEG
MLEG
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022