Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Overview

Description

image

Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ancestral SARS-CoV-2, Beta, Delta, and Omicron variants"

Methods

Raw reads underwent adapter/quality trimming (trim-galore v0.6.5 [citation: https://github.com/FelixKrueger/TrimGalore]), host filtering and read mapping to reference (bwa v0.7.17 [citation: arXiv:1303.3997v2 ], samtools v.1.7 [citation: 10.1093/bioinformatics/btp352]) trimming of primers (iVar v1.3 [citation:10.1186/s13059-018-1618-7]) and variant/consensus calling (freebayes v1.3.2 [citation: arXiv:1207.3907]) using the SIGNAL workflow (https://github.com/jaleezyy/covid-19-signal) v1.4.4dev (#60dd466) [citation: doi.org/10.3390/v12080895] with the ARTICv4 amplicon scheme (from https://github.com/artic-network/artic-ncov2019) and the MN908947.3 SARS-CoV-2 reference genome and annotations. Additional quality control and variant effect annotation (SnpEff v5.0-0 [citation:0.4161/fly.19695]) was performed using the ncov-tools v1.8.0 (https://github.com/jts/ncov-tools/). Finally, PANGO lineages were assigned to consensus sequences using pangolin v3.1.17 (with the PangoLEARN v2021-12-06 models) [citation:10.1093/ve/veab064], scorpio v0.3.16 (with constellations v0.1.1) [citation: https://github.com/cov-lineages/scorpio], and PANGO-designations v1.2.117 [citation:10.1038/s41564-020-0770-5]. Variants were summarised using PyVCF v0.6.8 [citation:https://github.com/jamescasbon/PyVCF] and pandas v1.2.4 [citation:10.25080/Majora-92bf1922-00a]. Phylogenetic analysis was performed using augur v13.1.0 [citation: 10.21105/joss.02906] with IQTree (v2.2.0beta) [citation:10.1093/molbev/msaa015] and the resulting phylogenetic figure generated using ETE v3.1.2 [citation: 10.1093/molbev/msw046]. Contexual sequences were incorporated into the phylogenetic analysis by using Nexstrain's ingested GISAID metadata and pandas to randomly sample a representative subset of sequences (jointly deposited in NCBI and GISAID) that belonged to lineages observed in Canada (see sequences_used_in_tree_with_acknowledgements.tsv for metadata and acknowledgements).

File Description

  • 20220101_MN01513_WGS114_DEC31SRI_CK_summary_valid_negative_pass_only.tsv ncov-tools generate QC summary

  • sk_variant_summary.ipynb notebook containing code to summarise variants (tables/variant_percentage_read_support_protein_nonsynonymous_only.tsv and graphic figures/intermediate/spike_mutation_table_styled.png) and subsample representative genomes phlyogeny/seqs/open_context_genomes.fasta from GISAID (nextstrain ingested fasta and metadata from 2021-12-31: metadata_2021-12-31_17-29.tsv.gz and sequences_fasta_2022_01_03.tar.xz)

  • genomes/ Consensus sequences generated by FreeBayes via SIGNAL.

  • variants/ ncov-tools SnpEff annotated SIGNAL FreeBayes VCFs

  • phylogeny data used to generate annotated phylogeny with augur

  • phylogeny/tree.sh script used to generate phylogeny

  • phylogeny/seqs sequences used for phlyogeny

  • phylogeny/data reference data for phylogeny

  • phylogeny/augur phylogeny and intermediate files

  • phlyogeny/viz_tree.py ete3 based script to generate phylogeny figure (tree.svg)

  • figure files for generating result plot

  • figure/phylo_variant_figure.* final figure combining tree.svg and spike_mutation_table_styled.png

  • figure/intermediate/tree.svg rendered SVG of phylogeny

  • figure/intermediate/spike_mutation_table_styled.png rendered summary of variants

  • tables set of tables for manuscript

  • tables/sequences_used_in_tree_with_acknowledgements.tsv ncov-ingest metadata with acknowledgements

  • tables/variant_percentage_read_support_protein_nonsynonymous_only.tsv summary of variants

You might also like...
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Easily pull telemetry data and create beautiful visualizations for analysis.
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

 TagLab: an image segmentation tool oriented to marine data analysis
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Releases(v0.1.1)
Owner
Finlay Maguire
Assistant Professor (Computer Science & Epidemiology). Working on infectious disease genomic epidemiology & data-driven solutions to social crises
Finlay Maguire
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022