Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Overview

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Prerequisites

This repo is built upon a local copy of transformers==2.1.1. This repo has been tested on torch==1.4.0 with python 3.7 and CUDA 10.1.

To start, create a new environment and install:

conda create -n grad2task python=3.7
conda activate grad2task
cd Grad2Task
pip install -e .

We use wandb for logging. Please set it up following this doc and specify your project name on wandb in run_meta_training.sh:

export WANDB=[YOUR PROJECT NAME]

Download the dataset and unzip it under the main folder: https://drive.google.com/file/d/1uAdgZFYv9epk6tQVQ3SwboxFpSlkC_ZW/view?usp=sharing

If need to place it somewhere else, specify its path in path.sh.

Train & Evaluation

To train/evaluate models:

bash meta_learn.sh [MODEL_NAME] [MODE] [EXP_ID]

where [MODEL_NAME] refers to model name, [MODE] is experiment model and [EXP_ID] is an optional experiment id used for mark different runs using the same model. Options for [MODEL_NAM] and MODE are listed as follow:

[MODE] Description
train Training models.
test_best Test the model with the best validation performance.
test_latest Test the latest checkpoint.
test Test model without meta-training. Only applicable to the fine-tune-baseline model.
[MODEL_NAME] Description
fine-tune-baseline Fine-tuning BERT for each task separately.
bert-protonet-euc ProtoNet with BERT as encoder, using Euclidean distance as distance metric.
bert-protonet-euc-bn ProtoNet with BERT+Bottleneck Adapters as encoder, using Euclidean distance as distance metric.
bert-protonet ProtoNet with BERT as encoder, using cosine distance as distance metric.
bert-protonet-bn ProtoNet with BERT+Bottleneck Adapters as encoder, using cosine distance as distance metric.
bert-leopard Leopard with pretrained BERT [1].
bert-leopard-fixlr Leopard but with fixed learning rates.
bert-cnap-bn-euc-context-cls-shift-scale-ar Our proposed approach using gradients as task representation.
bert-cnap-bn-euc-context-cls-shift-scale-ar-X Our proposed approach using average input encoding as task representation.
bert-cnap-bn-euc-context-cls-shift-scale-ar-XGrad Our proposed approach using both gradients and input encoding as task representation.
bert-cnap-bn-euc-context-cls-shift-scale-ar-XY Our proposed approach using input and textual label encoding as task representation.
bert-cnap-bn-euc-context-shift-scale-ar Same with our proposed approach except adapting all tokens instead of just the [CLS] token as we do.
bert-cnap-bn-pretrained-taskemb Our proposed approach with pretrained task embedding model.
bert-cnap-bn-hyper A hypernetwork based approach.

To run a model with different hyperparameters, first name this run by [EXP_ID] and then specify the new hyperparameters in run/meta_learn.sh. For example, if one wants to run bert-protonet-euc with a smaller learning rate, they could modify run/meta_learn.sh as:

...
elif [ $1 == "bert-protonet-bn" ]; then # ProtoNet with cosince distance
    export LEARNING_RATE=2e-5
    export CHECKPOINT_FREQ=1000
    if [ ${EXP_ID} == *"lr1e-5" ]; then
        export LEARNING_RATE=1e-5
        export CHECKPOINT_FREQ=2000
        # modify other hyperparameters here
    fi
...

and then run:

bash meta_learn.sh bert-protonet-bn train lr1e-5

Reference

[1] T. Bansal, R. Jha, and A. McCallum. Learning to few-shot learn across diverse natural language classification tasks. In Proceedings of the 28th International Conference on Computational Linguistics, pages 5108–5123, 2020.

Owner
Jixuan Wang
Computer Science PhD student at University of Toronto. Research interests include deep learning and machine learning, and their applications in healthcare.
Jixuan Wang
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022