Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Overview

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV)

Title

FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) Dataset
Alt Text

Paper

You can find the article related to this code here at Elsevier or
You can find the preprint from the Arxiv website.

Dataset

  • The dataset is uploaded on IEEE dataport. You can find the dataset here at IEEE Dataport or DOI. IEEE account is free, so you can create an account and access the dataset files without any payment or subscription.

  • This table below shows all available data for the dataset.

  • This project uses items 7, 8, 9, and 10 from the dataset. Items 7 and 8 are being used for the "Fire_vs_NoFire" image classification. Items 9 and 10 are for the fire segmentation.

  • If you clone this repository on your local drive, please download item 7 from the dataset and unzip in directory /frames/Training/... for the Training phase of the "Fire_vs_NoFire" image classification. The direcotry looks like this:

Repository/frames/Training
                    ├── Fire/*.jpg
                    ├── No_Fire/*.jpg
  • For testing your trained model, please use item 8 and unzip it in direcotry /frame/Test/... . The direcotry looks like this:
Repository/frames/Test
                    ├── Fire/*.jpg
                    ├── No_Fire/*.jpg
  • Items 9 and 10 should be unzipped in these directories frames/Segmentation/Data/Image/... and frames/Segmentation/Data/Masks/... accordingly. The direcotry looks like this:
Repository/frames/Segmentation/Data
                                ├── Images/*.jpg
                                ├── Masks/*.png
  • Please remove other README files from those directories and make sure that only images are there.

Model

  • The binary fire classifcation model of this project is based on the Xception Network:

Alt text

  • The fire segmentation model of this project is based on the U-NET:

Alt text

Sample

  • A short sample video of the dataset is available on YouTube: Alt text

Requirements

  • os
  • re
  • cv2
  • copy
  • tqdm
  • scipy
  • pickle
  • numpy
  • random
  • itertools
  • Keras 2.4.0
  • scikit-image
  • Tensorflow 2.3.0
  • matplotlib.pyplot

Code

This code is run and tested on Python 3.6 on linux (Ubuntu 18.04) machine with no issues. There is a config.py file in this directoy which shows all the configuration parameters such as Mode, image target size, Epochs, batch size, train_validation ratio, etc. All dependency files are available in the root directory of this repository.

  • To run the training phase for the "Fire_vs_NoFire" image classification, change the mode value to 'Training' in the config.py file. Like This
Mode = 'Training'

Make sure that you have copied and unzipped the data in correct direcotry.

  • To run the test phase for the "Fire_vs_NoFire" image classification, change the mode value to 'Classification' in the config.py file. Change This
Mode = 'Classification'

Make sure that you have copied and unzipped the data in correct direcotry.

  • To run the test phase for the Fire segmentation, change the mode value to 'Classification' in the config.py file. Change This
Mode = 'Segmentation'

Make sure that you have copied and unzipped the data in correct direcotry.

Then after setting your parameters, just run the main.py file.

python main.py

Results

  • Fire classification accuracy:

Alt text

  • Fire classification Confusion Matrix:

  • Fire segmentation metrics and evaluation:

Alt text

  • Comparison between generated masks and grount truth mask:

Alt text

  • Federated Learning sample
    To consider future challenges, we defined a new sample of federated learning on a local node (NVidia Jetson Nano, 4GB RAM). Jetson Nano is available in two versions: 1) 4GB RAM developer kit, and 2) 2GB RAM developer kit. In this Implementation, the 4GB version is used with the technical specifications of a 128-core Maxwell GPU, a Quad-core ARM A57 @ 1.43 GHz CPU, 4GB LPDDR4 RAM, and a 32GB microSD storage. To test Jetson Nano for the federated learning, items (9) and (10) from Dataset are used for the fire segmentation. Since Jetson Nano has limited RAM, we assumed that each drone has access to a portion of the FLAME dataset. Only 500 fire images and masks are considered for the training and validation phase on the drone. As we aimed at learning a model on a smaller subset of the FLAME dataset and inferring that model, the default Tensorflow version is used here. Also, the image and mask dimension for each input is reduced to 128 x 128 x 3 rather than 512 x 512 x 3. To save more memory on the RAM, all peripherals were turned off and only WiFi was working at that time for the Secure Shell (SSH) connection. The setup of this node is:

Citation

If you find it useful, please cite our paper as follows:

@article{shamsoshoara2021aerial,
  title={Aerial Imagery Pile burn detection using Deep Learning: the FLAME dataset},
  author={Shamsoshoara, Alireza and Afghah, Fatemeh and Razi, Abolfazl and Zheng, Liming and Ful{\'e}, Peter Z and Blasch, Erik},
  journal={Computer Networks},
  pages={108001},
  year={2021},
  publisher={Elsevier}
}

Other related repositories and articles

License

For academtic and non-commercial usage

Owner
Ph.D. in Informatics and Computing from Northern Arizona University, M.Sc. in Informatics, M.Sc, in Electrical Engineering, B.Sc. in Electrical Engineering
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022