The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

Overview

TriageSQL

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL"

Dataset Download

Due to the size limitation, please download the dataset from Google Drive.

Citations

If you want to use TriageSQL in your work, please cite as follows:

@article{zhang2020did,
  title={Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text-to-SQL},
  author={Zhang, Yusen and Dong, Xiangyu and Chang, Shuaichen and Yu, Tao and Shi, Peng and Zhang, Rui},
  journal={arXiv preprint arXiv:2010.12634},
  year={2020}
}

Dataset

In each json file of the dataset, one can find a field called type, which includes 5 different values, including small talk, answerable, ambiguous, lack data, and unanswerable by sql, corresponding to 5 different types described in our paper. Here is the summary of our dataset and the corresponding experiment results:

Type Trainset Devset Testset Type Alias Reported F1
small talk 31160 7790 500 Improper 0.88
ambiguous 48592 9564 500 Ambiguous 0.43
lack data 90375 19566 500 ExtKnow 0.56
unanswerable by sql 124225 26330 500 Non-SQL 0.90
answerable 139884 32892 500 Answerable 0.53
overall 434236 194037 2500 TriageSQL 0.66

The folder src contains all the source files used to construct the proposed TriageSQL. In addition, some part of files contains more details about the dataset, such as databaseid which is the id of the schema in the original dataset, e.g. "flight_2" in CoSQL, while question_datasetid indicates the original dataset name of the questions, e.g. "quac". Some of the samples do not contain these fields because they are either human-annotated or edited.

Model

We also include the source code for RoBERTa baseline in our project in /model. It is a multi-classifer with 5 classes where '0' represents answerable, '1'-'4' represent distinct types of unanswerable questions. Given the dataset from Google Drive, you may need to conduct some preprocessing to obtain train/dev/test set. You can directly download from here or make your own dataset using the following instructions:

Constructing input file for the RoBERTa model

The same as /testset/test.json, our input file is a json list with shape (num_of_question, 3) containing 3 lists: query, schema, and label.

  • query: containing strings of questions
  • schema: contianing strings of schema for each question, i.e., "table_name.column_name1 | table_name.column_name2 | ... " for multi-table questions, and column_name1 | column_name2 for single-table questions.
  • labels of questions, see config.label_dict for the mapping, leave arbitary value if testing is not needed or true labels are not given.

when preprocessing, please use lower case for all data, and remove the meaningless table names as well, such as T10023-1242. Also, we sample 10k from each type to form the large input dataset

Running

After adjusting the parameters in config.py, one can simply run python train.py or python eval.py to train or evaluate the model.

Explanation of other files

  • config.py: hyper parameters
  • train.py: training and evaluation of the model
  • utils.py: loading the dataset and tokenization
  • model.py: the RoBERTa classification model we used
  • test.json: sample of test input
Owner
Yusen Zhang
Yusen Zhang
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022