Bald-to-Hairy Translation Using CycleGAN

Overview

GANiry: Bald-to-Hairy Translation Using CycleGAN

Official PyTorch implementation of GANiry.

GANiry: Bald-to-Hairy Translation Using CycleGAN,
Fidan Samet, Oguz Bakir.
(arXiv pre-print)

Summary

This work presents our computer vision course project called bald men-to-hairy men translation using CycleGAN. On top of CycleGAN architecture, we utilize perceptual loss in order to achieve more realistic results. We also integrate conditional constrains to obtain different stylized and colored hairs on bald men. We conducted extensive experiments and present qualitative results in this work.

Getting Started

Setup

  1. Create new conda environment

    conda create --name ganiry
    
  2. Activate the environment

    conda activate ganiry 
    
  3. Install the requirements

    pip install -r requirements.txt
    
  4. Download CelebA dataset and prepare sub-dataset

    python build_copy.py --dataroot ./datasets/bald2hairy --celeba_path ./datasets/celeba/data
    

Training

Pre-trained models are also available.
Number of classes indicates the different hair classes in the dataset.

python train.py --dataroot ./datasets/bald2hairy --name bald2hairy --no_dropout --netG resnet_6blocks --load_size 143 --crop_size 128 --input_nc 4 --class_num 4 --percept_loss True --cycle_loss False

Test

One hot vector is the binary encoding of hair classes.

python test.py --dataroot ./datasets/bald2hairy --name bald2hairy --no_dropout --netG resnet_6blocks --load_size 143 --crop_size 128 --input_nc 4 --class_num 4 --percept_loss True --cycle_loss False --phase test --one_hot_vector 1 0 1 0

License

GANiry is released under GNU General Public License. We developed GANiry on top of CycleGAN. Please refer to License of CycleGAN for more details.

Citation

If you find GANiry useful for your research, please cite our paper as follows.

F. Samet, O. Bakir, "GANiry: Bald-to-Hairy Translation Using CycleGAN", arXiv, 2021.

BibTeX entry:

@misc{samet2021ganiry,
      title={GANiry: Bald-to-Hairy Translation Using CycleGAN}, 
      author={Fidan Samet and Oguz Bakir},
      year={2021},
      eprint={2109.13126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Fidan Samet
@Plentific | Software Engineer @HacettepeUniversity | B.Sc CS πŸŽ“
Fidan Samet
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
πŸ‘¨β€πŸ’» run nanosaur in simulation with Gazebo/Ingnition

πŸ¦• πŸ‘¨β€πŸ’» nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
πŸ› οΈ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
FewBit β€” a library for memory efficient training of large neural networks

FewBit FewBit β€” a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Γ–zdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022