Bald-to-Hairy Translation Using CycleGAN

Overview

GANiry: Bald-to-Hairy Translation Using CycleGAN

Official PyTorch implementation of GANiry.

GANiry: Bald-to-Hairy Translation Using CycleGAN,
Fidan Samet, Oguz Bakir.
(arXiv pre-print)

Summary

This work presents our computer vision course project called bald men-to-hairy men translation using CycleGAN. On top of CycleGAN architecture, we utilize perceptual loss in order to achieve more realistic results. We also integrate conditional constrains to obtain different stylized and colored hairs on bald men. We conducted extensive experiments and present qualitative results in this work.

Getting Started

Setup

  1. Create new conda environment

    conda create --name ganiry
    
  2. Activate the environment

    conda activate ganiry 
    
  3. Install the requirements

    pip install -r requirements.txt
    
  4. Download CelebA dataset and prepare sub-dataset

    python build_copy.py --dataroot ./datasets/bald2hairy --celeba_path ./datasets/celeba/data
    

Training

Pre-trained models are also available.
Number of classes indicates the different hair classes in the dataset.

python train.py --dataroot ./datasets/bald2hairy --name bald2hairy --no_dropout --netG resnet_6blocks --load_size 143 --crop_size 128 --input_nc 4 --class_num 4 --percept_loss True --cycle_loss False

Test

One hot vector is the binary encoding of hair classes.

python test.py --dataroot ./datasets/bald2hairy --name bald2hairy --no_dropout --netG resnet_6blocks --load_size 143 --crop_size 128 --input_nc 4 --class_num 4 --percept_loss True --cycle_loss False --phase test --one_hot_vector 1 0 1 0

License

GANiry is released under GNU General Public License. We developed GANiry on top of CycleGAN. Please refer to License of CycleGAN for more details.

Citation

If you find GANiry useful for your research, please cite our paper as follows.

F. Samet, O. Bakir, "GANiry: Bald-to-Hairy Translation Using CycleGAN", arXiv, 2021.

BibTeX entry:

@misc{samet2021ganiry,
      title={GANiry: Bald-to-Hairy Translation Using CycleGAN}, 
      author={Fidan Samet and Oguz Bakir},
      year={2021},
      eprint={2109.13126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Fidan Samet
@Plentific | Software Engineer @HacettepeUniversity | B.Sc CS 🎓
Fidan Samet
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022