Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Overview

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Authors:

*: Equal Contribution

Introduction

This repo contains implementation of the group VSA and binary HDC model with random Fourier feature (RFF) encoding, described in the paper Understanding Hyperdimensional Computing for Parallel Single-Pass Learning.

Our RFF method and group VSA can outperform the state-of-the-art HDC model while maintaining hardware efficiency. For example, on MNIST,

Model 1-Epoch Accuracy 10-Epoch Accuracy Circuit-Depth Complexity
Percep. 94.3 % 94.3 % 1299
SOTA HDC NA 89.0 % 295
RFF HDC 95.4 % 95.4 % 295
RFF G(2^3)-VSA 96.3 % 95.7 % 405

Dependencies and Data

Numpy and PyTorch>=1.0.0 are required to run the implementation. Supported datasets include MNIST, Fashion-MNIST, CIFAR-10, ISOLET and UCI-HAR. We provide the ISOLET and UCI-HAR data in dataset folder.

Usage

Please create the ./encoded_data folder before running the following code.

$ python main.py [-h] [-lr LR] [-gamma GAMMA] [-epoch EPOCH] [-gorder GORDER] [-dim DIM] 
[-data_dir DATA_DIR] [-model MODEL]
optional arguments:
  -h, --help            show this help message and exit
  -lr LR                learning rate for optimizing class representative
  -gamma GAMMA          kernel parameter for computing covariance
  -epoch EPOCH          epochs of training
  -gorder GORDER        order of the cyclic group required for G-VSA
  -dim DIM              dimension of hypervectors
  -resume               resume from existing encoded hypervectors
  -data_dir DATA_DIR    Directory used to save encoded data (hypervectors)
  -dataset {mnist,fmnist,cifar,isolet,ucihar}
                        dataset (mnist | fmnist | cifar | isolet | ucihar)
  -raw_data_dir RAW_DATA_DIR
                        Raw data directory to the dataset
  -model {rff-hdc,linear-hdc,rff-gvsa}
                        feature and model to use: (rff-hdc | linear-hdc | rff-gvsa)

For example,

$ python main.py -gamma 0.3 -epoch 10 -gorder 8 -dim 10000 -dataset mnist -model rff-gvsa

Citation

If you find this repo useful, please cite:


Owner
Cornell RelaxML
Chris De Sa's Research Group
Cornell RelaxML
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis

Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis, including human motion imitation, appearance transfer, and novel view synthesis. Currently the paper is under review

2.3k Jan 05, 2023
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022