CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

Overview

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

This is a repository for the following paper:

  • Keisuke Okumura, Ryo Yonetani, Mai Nishimura, Asako Kanezaki, "CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces," AAMAS, 2022 [paper] [project page]

You need docker (≥v19) and docker-compose (≥v1.29) to implement this repo.

Demo

(generated by ./notebooks/gif.ipynb)

Getting Started

We explain the minimum structure. To reproduce the experiments, see here. The link also includes training data, benchmark instances, and trained models.

Step 1. Create Environment via Docker

  • locally build docker image
docker-compose build        # required time: around 30min~1h
  • run/enter image as a container
docker-compose up -d dev
docker-compose exec dev bash
  • ./.docker-compose.yaml also includes an example (dev-gpu) when NVIDIA Docker is available.
  • The image is based on pytorch/pytorch:1.8.1-cuda10.2-cudnn7-devel and installs CMake, OMPL, etc. Please check ./Dockerfile.
  • The initial setting mounts $PWD/../ctrm_data:/data to store generated demonstrations, models, and evaluation results. So, a new directory (ctrm_data) will be generated automatically next to the root directory.

Step 2. Play with CTRMs

We prepared the minimum example with Jupyter Lab. First, startup your Jupyter Lab:

jupyter lab --allow-root --ip=0.0.0.0

Then, access http://localhost:8888 via your browser and open ./notebooks/CTRM_demo.ipynb. The required token will appear at your terminal. You can see multi-agent path planning enhanced by CTRMs in an instance with 20-30 agents and a few obstacles.

In what follows, we explain how to generate new data, perform training, and evaluate the learned model.

Step 3. Data Generation

The following script generates MAPP demonstrations (instances and solutions).

cd /workspace/scripts
python create_data.py

You now have data in /data/demonstrations/xxxx-xx-xx_xx-xx-xx/ (in docker env), like the below.

The script uses hydra. You can create another data, e.g., with Conflict-based Search [1] (default: prioritized planning [2]).

python create_data.py planner=cbs

You can find details and explanations for all parameters with:

python create_data.py --help

Step 4. Model Training

python train.py datadir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx

The trained model will be saved in /data/models/yyyy-yy-yy_yy-yy-yy (in docker env).

Step 5. Evaluation

python eval.py \
insdir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx/test \
roadmap=ctrm \
roadmap.pred_basename=/data/models/yyyy-yy-yy_yy-yy-yy/best

The result will be saved in /data/exp/zzzz-zz-zz_zz-zz-zz.

Probably, the planning in all instances will fail. To obtain successful results, we need more data and more training than the default parameters as presented here. Such examples are shown here (experimental settings).

Notes

  • Analysis of the experiments are available in /workspace/notebooks (as Jupyter Notebooks).
  • ./tests uses pytest. Note that it is not comprehensive, rather it was used for the early phase of development.

Documents

A document for the console library is available, which is made by Sphinx.

  • create docs
cd docs; make html
  • To rebuild docs, perform the following before the above.
sphinx-apidoc -e -f -o ./docs ./src

Known Issues

  • Do not set format_input.fov_encoder.map_size larger than 250. We are aware of the issue with pybind11; data may not be transferred correctly.
  • We originally developed this repo for both 2D and 3D problem instances. Hence, most parts of the code can be extended in 3D cases, but it is not fully supported.
  • The current implementation does not rely on FCL (collision checker) since we identified several false-negative detection. As a result, we modeled whole agents and obstacles as circles in 2D spaces to detect collisions easily. However, it is not so hard to adapt other shapes like boxes when you use FCL.

Licence

This software is released under the MIT License, see LICENCE.

Citation

# arXiv version
@article{okumura2022ctrm,
  title={CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces},
  author={Okumura, Keisuke and Yonetani, Ryo and Nishimura, Mai and Kanezaki, Asako},
  journal={arXiv preprint arXiv:2201.09467},
  year={2022}
}

Reference

  1. Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence
  2. Silver, D. (2005). Cooperative pathfinding. Proc. AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-05)
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Code repo for realtime multi-person pose estimation in CVPR'17 (Oral)

Realtime Multi-Person Pose Estimation By Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh. Introduction Code repo for winning 2016 MSCOCO Keypoints Cha

Zhe Cao 4.9k Dec 31, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
202 Jan 06, 2023
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022