CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

Overview

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

This is a repository for the following paper:

  • Keisuke Okumura, Ryo Yonetani, Mai Nishimura, Asako Kanezaki, "CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces," AAMAS, 2022 [paper] [project page]

You need docker (≥v19) and docker-compose (≥v1.29) to implement this repo.

Demo

(generated by ./notebooks/gif.ipynb)

Getting Started

We explain the minimum structure. To reproduce the experiments, see here. The link also includes training data, benchmark instances, and trained models.

Step 1. Create Environment via Docker

  • locally build docker image
docker-compose build        # required time: around 30min~1h
  • run/enter image as a container
docker-compose up -d dev
docker-compose exec dev bash
  • ./.docker-compose.yaml also includes an example (dev-gpu) when NVIDIA Docker is available.
  • The image is based on pytorch/pytorch:1.8.1-cuda10.2-cudnn7-devel and installs CMake, OMPL, etc. Please check ./Dockerfile.
  • The initial setting mounts $PWD/../ctrm_data:/data to store generated demonstrations, models, and evaluation results. So, a new directory (ctrm_data) will be generated automatically next to the root directory.

Step 2. Play with CTRMs

We prepared the minimum example with Jupyter Lab. First, startup your Jupyter Lab:

jupyter lab --allow-root --ip=0.0.0.0

Then, access http://localhost:8888 via your browser and open ./notebooks/CTRM_demo.ipynb. The required token will appear at your terminal. You can see multi-agent path planning enhanced by CTRMs in an instance with 20-30 agents and a few obstacles.

In what follows, we explain how to generate new data, perform training, and evaluate the learned model.

Step 3. Data Generation

The following script generates MAPP demonstrations (instances and solutions).

cd /workspace/scripts
python create_data.py

You now have data in /data/demonstrations/xxxx-xx-xx_xx-xx-xx/ (in docker env), like the below.

The script uses hydra. You can create another data, e.g., with Conflict-based Search [1] (default: prioritized planning [2]).

python create_data.py planner=cbs

You can find details and explanations for all parameters with:

python create_data.py --help

Step 4. Model Training

python train.py datadir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx

The trained model will be saved in /data/models/yyyy-yy-yy_yy-yy-yy (in docker env).

Step 5. Evaluation

python eval.py \
insdir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx/test \
roadmap=ctrm \
roadmap.pred_basename=/data/models/yyyy-yy-yy_yy-yy-yy/best

The result will be saved in /data/exp/zzzz-zz-zz_zz-zz-zz.

Probably, the planning in all instances will fail. To obtain successful results, we need more data and more training than the default parameters as presented here. Such examples are shown here (experimental settings).

Notes

  • Analysis of the experiments are available in /workspace/notebooks (as Jupyter Notebooks).
  • ./tests uses pytest. Note that it is not comprehensive, rather it was used for the early phase of development.

Documents

A document for the console library is available, which is made by Sphinx.

  • create docs
cd docs; make html
  • To rebuild docs, perform the following before the above.
sphinx-apidoc -e -f -o ./docs ./src

Known Issues

  • Do not set format_input.fov_encoder.map_size larger than 250. We are aware of the issue with pybind11; data may not be transferred correctly.
  • We originally developed this repo for both 2D and 3D problem instances. Hence, most parts of the code can be extended in 3D cases, but it is not fully supported.
  • The current implementation does not rely on FCL (collision checker) since we identified several false-negative detection. As a result, we modeled whole agents and obstacles as circles in 2D spaces to detect collisions easily. However, it is not so hard to adapt other shapes like boxes when you use FCL.

Licence

This software is released under the MIT License, see LICENCE.

Citation

# arXiv version
@article{okumura2022ctrm,
  title={CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces},
  author={Okumura, Keisuke and Yonetani, Ryo and Nishimura, Mai and Kanezaki, Asako},
  journal={arXiv preprint arXiv:2201.09467},
  year={2022}
}

Reference

  1. Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence
  2. Silver, D. (2005). Cooperative pathfinding. Proc. AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-05)
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022