A self-supervised learning framework for audio-visual speech

Overview

AV-HuBERT (Audio-Visual Hidden Unit BERT)

Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction

Robust Self-Supervised Audio-Visual Speech Recognition

lip-reading

Introduction

AV-HuBERT is a self-supervised representation learning framework for audio-visual speech. It achieves state-of-the-art results in lip reading, ASR and audio-visual speech recognition on the LRS3 audio-visual speech benchmark.

If you find AV-HuBERT useful in your research, please use the following BibTeX entry for citation.

@inproceedings{shi2022avhubert,
    author  = {Bowen Shi and Wei-Ning Hsu and Kushal Lakhotia and Abdelrahman Mohamed},
    title = {Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction},
    year = {2022}
}

@article{shi2022avsr,
    author  = {Bowen Shi and Wei-Ning Hsu and Abdelrahman Mohamed},
    title = {Robust Self-Supervised Audio-Visual Speech Recognition},
    journal = {arXiv preprint arXiv:2201.01763}
    year = {2022}
}

License

AV-HuBERT LICENSE AGREEMENT

This License Agreement (as may be amended in accordance with this License Agreement, “License”), between you (“Licensee” or “you”) and Meta Platforms, Inc. (“Meta” or “we”) applies to your use of any computer program, algorithm, source code, object code, or software that is made available by Meta under this License (“Software”) and any specifications, manuals, documentation, and other written information provided by Meta related to the Software (“Documentation”).

By using the Software, you agree to the terms of this License. If you do not agree to this License, then you do not have any rights to use the Software or Documentation (collectively, the “Software Products”), and you must immediately cease using the Software Products.

Pre-trained and fine-tuned models

Please find the checkpoints here

Installation

First, create a conda virtual environment and activate it:

conda create -n avhubert python=3.8 -y
conda activate avhubert

Then, clone this directory:

git clone https://github.com/facebookresearch/av_hubert.git
cd avhubert
git submodule init
git submodule update

Lastly, install Fairseq and the other packages:

pip install -r requirements.txt
cd fairseq
pip install --editable ./

Load a pretrained model

$ cd avhubert
$ python
>>> import fairseq
>>> import hubert_pretraining, hubert
>>> ckpt_path = "/path/to/the/checkpoint.pt"
>>> models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
>>> model = models[0]

Train a new model

Data preparation

Follow the steps in preparation to pre-process:

  • LRS3 and VoxCeleb2 datasets

Follow the steps in clustering (pre-train only) to create:

  • {train,valid}.km frame-aligned pseudo label files. The label_rate is the same as the feature frame rate used for clustering, which is 100Hz for MFCC features and 25Hz for AV-HuBERT features by default.

Pre-train an AV-HuBERT model

Suppose {train,valid}.tsv are saved at /path/to/data, {train,valid}.km are saved at /path/to/labels, the configuration file is saved at /path/to/conf/conf-name, and the label rate is 100Hz.

To train a model, run:

$ cd avhubert
$ fairseq-hydra-train --config-dir /path/to/conf/ --config-name conf-name \
  task.data=/path/to/data task.label_dir=/path/to/label \
  model.label_rate=100 hydra.run.dir=/path/to/experiment/pretrain/ \
  common.user_dir=`pwd`

Finetune an AV-HuBERT model with Seq2Seq

Suppose {train,valid}.tsv are saved at /path/to/data, {train,valid}.wrd are saved at /path/to/labels, the configuration file is saved at /path/to/conf/conf-name.

To fine-tune a pre-trained HuBERT model at /path/to/checkpoint, run:

$ cd avhubert
$ fairseq-hydra-train --config-dir /path/to/conf/ --config-name conf-name \
  task.data=/path/to/data task.label_dir=/path/to/label \
  task.tokenizer_bpe_model=/path/to/tokenizer model.w2v_path=/path/to/checkpoint \
  hydra.run.dir=/path/to/experiment/finetune/ common.user_dir=`pwd`

Decode an AV-HuBERT model

Suppose the test.tsv and test.wrd are the video list and transcripts of the split to be decoded, saved at /path/to/data, and the fine-tuned model is saved at /path/to/checkpoint.

Seq2Seq decoding

task.normalize needs to be consistent with the value used during fine-tuning. Decoding results will be saved at /path/to/experiment/decode/s2s/test.

$ cd avhubert
$ python -B infer_s2s.py --config-dir ./conf/ --config-name conf-name \
  dataset.gen_subset=test common_eval.path=/path/to/checkpoint \
  common_eval.results_path=/path/to/experiment/decode/s2s/test \
  override.modalities=['video'] common.user_dir=`pwd`

The command above uses the default decoding hyperparameter, which can be found in conf/s2s_decode.yaml. override.modalities can be set to ['video'] (for lip reading), or ['audio'] (for ASR) or ['audio','video'] (for audio-visual speech recognition).These parameters can be configured from the command line. For example, to search with a beam size of 20, we can append the command above with generation.beam=20. Important parameters include:

  • generation.beam
  • generation.lenpen

If you want to test your model under noisy environment, append the following to the above command.

+override.noise_wav=/path/to/noise override.noise_prob=1 override.noise_snr={snr}

{snr} is the signal-to-noise ratio (SNR) and /path/to/noise is a folder containing noise manifest files (/path/to/noise/{valid,test}.tsv). See preparation for setting up this folder.

Owner
Meta Research
Meta Research
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022