E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

Overview

End-to-end Music Remastering System

This repository includes source code and pre-trained models of the work End-to-end Music Remastering System Using Self-supervised and Adversarial Training by Junghyun Koo, Seungryeol Paik, and Kyogu Lee.

We provide inference code of the proposed system, which targets to alter the mastering style of a song to desired reference track.

arXiv Demo Page

Pre-trained Models

Model Number of Epochs Trained Details
Music Effects Encoder 1000 Trained with MTG-Jamendo Dataset
Mastering Cloner 1000 Trained with the above pre-trained Music Effects Encoder and Projection Discriminator

Inference

To run the inference code,

  1. Download pre-trained models above and place them under the folder named 'model_checkpoints' (default)
  2. Prepare input and reference tracks under the folder named 'inference_samples' (default).
    Target files should be organized as follow:
    "path_to_data_directory"/"song_name_#1"/input.wav
    "path_to_data_directory"/"song_name_#1"/reference.wav
    ...
    "path_to_data_directory"/"song_name_#n"/input.wav
    "path_to_data_directory"/"song_name_#n"/reference.wav
  1. Run 'inference.py'
python inference.py \
    --ckpt_dir "path_to_checkpoint_directory" \
    --data_dir_test "path_to_directory_containing_inference_samples"
  1. Outputs will be stored under the folder 'inference_samples' (default)

Note: The system accepts WAV files of stereo-channeled, 44.1kHZ, and 16-bit rate. Target files shold be named "input.wav" and "reference.wav".

Configurations of each sub-networks

config_table

A detailed configuration of each sub-networks can also be found at

Self_Supervised_Music_Remastering_System/configs.yaml
Owner
Junghyun (Tony) Koo
Ph.D. Student @ Music and Audio Research Group (MARG), Seoul National University. Interests - intelligent music production
Junghyun (Tony) Koo
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kiantรฉ Brantley 25 Apr 28, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Wordle-solver - Wordle answer generation program in python

๐ŸŸจ Wordle Solver ๐ŸŸฉ Wordle answer generation program in python โœ”๏ธ Requirements U

Dahyun Kang 4 May 28, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... ๋ชจ๋ธ์˜ ๊ฐœ๋…์ดํ•ด๋ฅผ ๋•๊ธฐ ์œ„ํ•œ ๊ตฌํ˜„๋ฌผ๋กœ ํ˜„์žฌ ๋ณ€์ˆ˜๋ช…์„ ์ƒ์„ธํžˆ ์ ์—ˆ๊ณ 

BG Kim 3 Oct 06, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022