Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

Overview

naqs-for-quantum-chemistry

Generic badge MIT License


This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio quantum chemistry.


(a) Architecture of a neural autoregressive quantum state (NAQS) (b) Energy surface of N2

TL;DR

Certain parts of the notebooks relating to generating molecular data are currently not working due to updates to the underlying OpenFermion and Psi4 packages (I'll fix it!) - however the experimental results of NAQS can still be reproduced as we also provide pre-generated data in this repository.

If you don't care for now, and you just want to see it running, here are two links to notebooks that will set-up and run on Colab. Just note that Colab will not have enough memory to run experiments on the largest molecules we considered.

  • run_naqs.ipynb Open In Colab: Run individual experiments or batches of experiments, including those to recreate published results.

  • generate_molecular_data_and_baselines.ipynb Open In Colab:

    1. Create the [molecule].hdf5 and [molecule]_qubit_hamiltonian.pkl files required (these are provided for molecules used in the paper in the molecules directory.)
    2. Solve these molecules using various canconical QC methods using Psi4.

Overview

Quantum chemistry with neural networks

A grand challenge of ab-inito quantum chemistry (QC) is to solve the many-body Schrodinger equation describing interaction of heavy nuclei and orbiting electrons. Unfortunatley, this is an extremely (read, NP) hard problem, and so a significant amout of research effort has, and continues, to be directed towards numerical methods in QC. Typically, these methods work by optimising the wavefunction in a basis set of "Slater determinants". (In practice these are anti-symetterised tensor products of single-electron orbitals, but for our purposes let's not worry about the details.) Typically, the number of Slater determinants - and so the complexity of optimisation - grows exponentially with the system size, but recently machine learning (ML) has emerged as a possible tool with which to tackle this seemingly intractable scaling issue.

Translation/disclaimer: we can use ML and it has displayed some promising properties, but right now the SOTA results still belong to the established numerical methods (e.g. coupled-cluster) in practical settings.

Project summary

We follow the approach proposed by Choo et al. to map the exponentially complex system of interacting fermions to an equivilent (and still exponentially large) system of interacting qubits (see their or our paper for details). The advantage being that we can then apply neural network quantum states (NNQS) originally developed for condensed matter physics (CMP) (with distinguishable interacting particles) to the electron structure calculations (with indistinguishable electrons and fermionic anti-symettries).

This project proposes that simply applying techniques from CMP to QC will inevitably fail to take advantage of our significant a priori knowledge of molecular systems. Moreover, the stochastic optimisation of NNQS relies on repeatedly sampling the wavefunction, which can be prohibitively expensive. This project is a sandbox for trialling different NNQS, in particular an ansatz based on autoregressive neural networks that we present in the paper. The major benefits of our approach are that it:

  1. allows for highly efficient sampling, especially of the highly asymmetric wavefunction typical found in QC,
  2. allows for physical priors - such as conservation of electron number, overall spin and possible symettries - to be embedded into the network without sacrificing expressibility.

Getting started

In this repo

notebooks
  • run_naqs.ipynb Open In Colab: Run individual experiments or batches of experiments, including those to recreate published results.

  • generate_molecular_data_and_baselines.ipynb Open In Colab:

    1. Create the [molecule].hdf5 and [molecule]_qubit_hamiltonian.pkl files required (these are provided for molecules used in the paper in the molecules directory.)
    2. Solve these molecules using various canconical QC methods using Psi4.
experiments

Experimental scripts, including those to reproduced published results, for NAQS and Psi4.

molecules

The molecular data required to reproduce published results.

src / src_cpp

Python and cython source code for the main codebase and fast calculations, respectively.

Running experiments

Further details are provided in the run_naqs.ipynb notebook, however the published experiments can be run using the provided batch scripts.

>>> experiments/bash/naqs/batch_train.sh 0 LiH

Here, 0 is the GPU number to use (if one is available, otherwise the CPU will be used by default) and LiH can be replaced by any folder in the molecules directory. Similarly, the experimental ablations can be run using the corresponding bash scripts.

>>> experiments/bash/naqs/batch_train_no_amp_sym.sh 0 LiH
>>> experiments/bash/naqs/batch_train_no_mask.sh 0 LiH
>>> experiments/bash/naqs/batch_train_full_mask.sh 0 LiH

Requirements

The underlying neural networks require PyTorch. The molecular systems are typically handled by OpenFermion with the backend calculations and baselines requiring and Psi4. Note that this code expects OpenFermion 0.11.0 and will need refactoring to work with newer versions. Otherwise, all other required packages - numpy, matplotlib, seaborn if you want pretty plots etc - are standard. However, to be concrete, the linked Colab notebooks will provide an environment in which the code can be run.

Reference

If you find this project or the associated paper useful, it can be cited as below.

@article{barrett2021autoregressive,
  title={Autoregressive neural-network wavefunctions for ab initio quantum chemistry},
  author={Barrett, Thomas D and Malyshev, Aleksei and Lvovsky, AI},
  journal={arXiv preprint arXiv:2109.12606},
  year={2021}
}
You might also like...
TensorFlow code for the neural network presented in the paper:
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Low-code/No-code approach for deep learning inference on devices
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

Comments
  • pip installation

    pip installation

    Great code. It runs very smoothly and clearly outperforms the results in Choo et al. Would you consider re-engineering the code slightly to allow for a pipy installation?

    opened by kastoryano 0
Releases(v1.0.0)
Owner
Tom Barrett
Research Scientist @ InstaDeep, formerly postdoctoral researcher @ Oxford. RL, GNN's, quantum physics, optical computing and the intersection thereof.
Tom Barrett
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022